Enhancing Authentication Security: A Python-Based System for Brute Force

Attack Prevention

University of Essex

Master of Science in Cybersecurity

Beatrice Karimi Mutegi

Student ID: 12689392

Academic Year: 2022 - 2025

Supervisors: Dr. Oliver Buckley and Dr. Bakhtiyar Ahmed

This Dissertation is presented in part fulfilment of the requirement for the completion of

a Master of Science in Cybersecurity at the University of Essex.

Abstract

Brute force attacks continue to pose significant threats to information systems, often
targeting authentication mechanisms with inadequate security controls. This study
explores and implements a Python-based authentication framework designed to

mitigate such threats, particularly within Django-based systems.

The research investigates vulnerabilities commonly exploited in Python login systems,
evaluates the strengths and weaknesses of existing brute force mitigation strategies,
and proposes a secure, multi-layered defence system. The prototype integrates
CAPTCHA, time-based OTP-based two-factor authentication, IP-based rate limiting,
device fingerprinting, time-based email-token verification, logging, password

management, and account lockout mechanisms.

Quantitative simulation results demonstrate that the system successfully blocked over
98% of brute-force attempts and provided real-time analytics to administrators via a
dashboard. Additionally, user experience considerations were incorporated to balance

security and usability.

This dissertation contributes to a practical model for securing Python/Django-based
login systems, answering key research questions about effective mitigation while

identifying areas for future enhancement in usability and system adaptability.

Declaration

Submitted in fulfilment of the requirements for the Master of Science in Cybersecurity,

at the University of Essex

2025

The author hereby declares that this whole thesis or dissertation, unless specifically

indicated to the contrary in the text, is her own original work.

Beatrice Karimi Mutegi

MSc in Cybersecurity

Table of Contents

ADSIIACT. ..o 2
[D7=Tod F= 1 = 14 [0 o F PP PP P PP PPPPPPPPPPPPPP 3
RSy o) B o LU T PP PPPPPPPPPPPPP 11
RSy o) B = 1o] =2 PP PPPPPPPPPPPPI 14
Chapter 1: INtrOAUCTION . ..uueiiiiiiiiiiiiiie s 16
1.0 BACKGIOUNG ...ttt 16
1.2: Problem Stat@mMENTuuiiiiiiiiiiiiiiiiiiie e 17
1.3: RESEAICH ODjJECTIVES .. uuuiiiiiiiiiiiiiiiiiiitib e 18
1.4: ResearCh QUESTIONS ...ocoiiiiiiiiie et e e e e e e et e e e e e e e eeeenenes 18
1.5: Significance of the StUAYoiiiiiiii e 19
1.6: DISSErtation StIUCTUIEc.cuviiiiiiiie ettt a e e e e 20
Chapter 2: LiteratUre REVIEWciii i i it e e e et e e e e e e e eenaaan s 20
2.1: Overview of Authentication SECUTNITYcccovviiiiiiiiiii e 20
2.1.1: Traditional Authentication Methodscccvvviiiiiiiii e 21
2.1.2: Modern Authentication Methodsoocuiiiiiiiiiiiiie e 21
2.1.3: Authentication Methods COmMPariSONccevviviiiiiii e 24
2.2: Brute Force Attacks and their TeChNIQUESceiiiiiiiiiiiiiiee e, 25
2.3: Existing Mitigation StrategiesS........c.uuviiiiiiieiiieeecee e 26
2.3.1: Account LOCKOUL POIICIES:uuiiiiiiiiieiiiiiiii et 27

2.3.2: CAPTCHA and Bot DeteCHION: ..o, 27

2.3.3: Rate Limiting and IP BIOCKING:oooiiiieiee 28
2.3.4: Multi-Factor Authentication (MFA): ... 28
2.3.5: Adaptive AUtNENTICALION: ...coooi i 28
2.3.6: Machine learning algorithms: ... 28
2.3.8: Encryption and Password Salting: ... 29
2.3.9: Ensuring Effective Password Management: ... 29
2.3.10: Intrusion Detection Systems (IDS):ccoovveeiiiiiiee e 30
2.3.11: Artificial Intelligence (Al) ... 30
2.4: Limitations of EXiSting SOIUTIONSuuuiiiiiiiii e 30
2.5: Challenges in Securing Authentication SyStems........cccccvvviiiiiieeceveeeiiiinnn. 31
2.5.1: User Resistance and Usability CONCEIMNS:..........ccoeviiiiiiiiieiiiiiiee e 31
2.5.2: SCAlADIITY:...uueii e 31
2.5.3: Evolving Attack Methods:..........oovviiiiiii e 31

p T (o EY =T T (o3 o I 7= T o S 32
Chapter 3: MethOdOlOgY ...coooiiiieiii e 35
3.1: RESEAICN DESIGN .. .cciiiiiiiiiie et e e e e e e e 35
3.1.1: Methodological Framework:ccoiiiiiiiiiiiiiie e 36
3.1.2: Justification for Python and Django:ooevuiiiiiiiiieeiieeccee e 37
3.2: Threat Modelling APProach...........ouiiiiii e 38
3.2.1: STRIDE Threat Modelling:ooo i 39

5

3.3: System Development Approach: Agile Methodology (Adapted for Solo

DEVEIOPIMENT) ..ttt 42
3.3.1: SPriNt Planning: ..o 43
3.3.2: Backlog Management and Prioritization:ccccoveeiiiiie 49
3.3.3: Self-Evaluation and Reflection: ... 50

3.4: Data CollECHION ... 50
3.4.1: Literature Review (QUalitative) ... 50
3.4.2: Test Simulations (QUaNtitative):coooriiii i 51

3.4.3: Usability and System Feedback Evaluation using Heuristic Evaluation

(@ LU= 111 =)=) 51
3.4.4: Logging and Dashboard AnalytiCS:ccovvviiiiiiiiiieeiieeecee e 51
3.5: Data AnalysisS APPrOACH ... i 52
3.6: Ethical and Professional Considerationscccccceeviiiiiiiiiieieeeeee e 52
Chapter 4: System Design and Implementationcccooooeeiiiiiiiiiiii e, 53
4.1: System Requirements and SpecificationS...........cccovvvvviiiiiiiiiie e 54
4.1.1: System Architecture and DeSIgN:..........coouuuiiiiiiieeeeeeecre e 54
4.1.2: Tools and LIbraries USEA:cooiiiiiiiiiiiiiiieeee et 56
4.2: Implementation Strategycoovuuiiiiii e 59
4.3: Security Risk Mitigation and Compliance Mappingcccceeeeeeevveeeiiiiiieeeeeeennn. 64
4.3.1: Secure Authentication WOrkflow:coooviiiiiiiiiiiiiiiiieeeeeeeee 67

4.4: TeStING PrOCEAUIEScoiiiiiiiiiiiiieeeeeee ettt 68

4.4.1: Controlled SIMUIALIONS:ccoeiiiiiiiiiiiiiiiieeiieee et 69
4.4.2: FUNCHIONAl SYStEM TESIS: ...eiiiiiiiiiiiiiiiii ittt eeees 70
4.4.3: Usability Evaluation using Nielsen's 10 Usability Heuristics:ccoevee.... 71
4.4.4: Dashboard ANAIYEICS:oviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee ettt 72
4.4.5: Penetration Testing Approach and Tool Justification:ccccccvvvvvveiveeennnnn. 73
4.4.6: Ethical CONSIAEratiONS:covviiiiiiiiiiiiiiiiiiiieeeeee ettt eeeeees 73
4.5: Security vs. Usability Trade-0ffS ... 74
Chapter 5: Discussion and Evaluation of RESUItS.........cccooviiiiiiiiiiiiiiiii e, 75
5.1: Data Presentation and ANalySiS ... 75
5.1.1: Brute-force ProteCHON:ciieii ittt 75
5.1.2: CAPTCHA ValIdAtioN:coeiiiiiiiiiiiiieee et 76
5.1.3: OTP AUTNENTICALION:uuiiiiiiie i 76
5.1.4: Email Verification AUthentiCation:.............coovviiiiiiiiiiie e 77
5.1.5: PaSSWOIA EXPINY: ..oeeeeiiiiieieeeeeee et e e ettt s e e e e e e e e et a e e e e e e e e eeesana s 77
5.1.6: IP Lockout and GeolOCatiON:uuiiiiiieiiiiiiiiiie e 78
5.1.7: Admin and User Feedback:..............oueiiiiiiiiiiie e 78
5.2: Evaluation Benchmarks and MEetriCScccuvuiiiiiiiiiiiiiiiieeee e 79
5.2.1: Usability EValUALIONS:......ccooeiiiiiiiiiee e 79
5.2.2: SECUNLY MEIIICS: . .iieiiiiiie et e e e e e s 80
5.2.3: SYStem PerfOrmManCe:coiiiiiii i 80

7

5.3: Summary and Interpretation of the Resultsccc 80

5.4: Effectiveness of Addressing Research Gaps.........cccciiiii, 81
5.5: Comparison with Existing SOIUtioNS.........ooooiii 82
5.6: Challenges, Limitations and Proposed Solutions..........ccccoeieiiiiiiee, 84
Chapter 6: Conclusion and RecommendationS...........uuueiiiiieeiriiieiiiiine e eeeeeeeiiinns 87
6.1: Summary of Key FINAINGS 87
6.2: Alignment with Research QUESTIONSuuuuiiiiiiiiiiiii e 88
6.3: Achievement of Research ODJECTIVES ... 91
6.4: Key Contributions to the Field ... 93
6.5 RECOMMENUATIONS ...ttt 94
B.6: FULUIE WOTK ...ttt e e e e e e e e e e 96
6.7 CONCIUSTON ittt e e e e e e e e e e e e 96
RETEIENCES ...ttt e e r e e e e e 98
Y o o 1= Lo [T o =SSR 108
Appendix A: Setup Guide/Readme file........coooviiiiiiiiiii e 108
Appendix B: Source Code Snippets of Core Componentscccceevvvvveeeeeeennn. 109
Implementation of Django-AXesS 0N SEettiNgS.PY ...ueeieeeeiiiiiiiiiiie e 109
Login view capturing rate lMitcoooiriiiiiiiie e e 110
SIGNUP VIEW ...ttt e e e e e ettt e e e e e e e e e e et it e e e e e e e e e eeessbaasaeeeaaeeeennnes 111
Email Token Verification as 0N tOKENS.PY......uuuiiiiieeeiiieiicie e 112
User Access Control 0N DeCOratorS.PY ... cvveuriieieeiiiieeeeeiis e et e e e e aeees 112

OTP-based Two-Factor Authentication (2FA) Logic on Login View....................... 113

CAPTCHA Verification LOQIC ON LOGIN VIEWcooieiiiiiiiiiiiiie e ettt eeeeeeeeeeees 113
Progressive Account Lockout Implementation Code as on utilS.py...........cccccuneee 114
Email Token Generator COE..........uuuuuuuiiiiiiiiiiiiiiii e 114
UTL S Y ettt 115
Device Fingerprinting (User agents) implementation on Signals.py...................... 115
G00gle reCAPTCHA V2 SEHINGS ..o oo i oottt 116
Appendix C: FUNCLIONAlity TESIS.....cciiiiiiiiiiiiiiiieeeeeeeeeeeee e 117
Login LogiC FUNCLONAIILY TESTSuuuuuuiiiiiiiiiiiiiiiiiiiii e 117
Sign-up Logic FUunctionality TESScoooviiiiiieiieeee e 123
Password Reset Logic Functionality TeStS.......ccciveeeiiieeiiiiiiiiieeee et e e e e e e 127
Lockout LogiC FUNCLIONAITLY TESESceeeiiiieeiiiiiie e e e et e e e e e eeeaeees 129
Contact Support Logic Functionality TeSIS.........cceevviieiiiiiiiiiii e e e e 132
Session Expiry Functionality TEStcovvuiiiiiiiii e e e 133
Appendix D: Simulation Tests and ReSUILSccoevviiiiiiiiiiiiiiii e 135
Progressive Lockout Simulation Tests and ReSUILScccccooeeviiiiiiiiiiiie e, 135
Password Expiration and Change Simulation Tests and Results.......................... 137
Time-Based OTP Expiration (Login) Simulation Tests and Results 139
Time-Based Email Token Expiration (Signup) Simulation Tests and Results......... 140
Brute Force Attack Simulation Tests and ReSUILSoooiiiiiiiiiiiiiiiiiiieeen 141
Distributed Brute Force Attack Simulation Tests and ResuUltScccccccinnnnne 144

9

Concurrent Session Test and ReSUItS...........oooeiiiiiii
pytest and RESUILSoooviiiiieee
Appendix E: Dashboard Analytics and Lockout stats Logs Test

Dashboard ANAIYICS VIEWuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaaee

10

List of Figures

Figure 1:Traditional vs. Modern Authentication Methods...............coevviiiviiiiiiiiiiiiiiiiinene. 25
Figure 4.2: System Architecture and Component INteractionceeveeveeeeeeeeeeeeenennne. 56
Figure 3: Secure Login and Signup Workflow with Integrated Security Controls........... 68
Figure 4: Django-AXeS as ON SEHINGS.PY . .everrririiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 109
Figure 5: Rate limit 0N 10QiN VIEW..........oiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee ettt 110
FIQUIE 6: SIGNUP VIBW....ciiiiiiiiiiiiiiiiiiitie ettt ettt ettt e e ettt e et e et e et e e e eeeeeeeeeeees 111
Figure 7: Email token 0N tOKENS.PY ...cevviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee et eeeeeeeeeeeees 112
Figure 8: User Access Control 0N deCOratorS.PYciveeeeveeeeriuuiiieeeeeeeeeririineseeeeeeeennanns 112
Figure 9: OTP verification 0N LOGIN VIEBWcuuuuiiiiiieeeiiieeiiiiee e e eeeeeeeiiins s e e e e eeeeennnns 113
Figure 10: CAPTCHA Verification 0N LOGIN VIEWcccovviuiiiiiiiieeeeeeeeeeiiiiae e e e eeeeeennnnns 113
Figure 11: Progressive LOCKOUL ON ULIHS.PY ...ovvvvviviiiiiieeeececeeiiie et e e e eeeaens 114
Figure 12: Email Token Generator 0N tOKENS.PY ...uvieeeeeiieiiiiiiiiieeeeeeeeeeiiiee e eeeeeeeenens 114
[T UL R U FS o) USRPRUPTN 115
Figure 14: User agents 0N SIGNAIS.PYcoieeeiiiiiiiiiiiei et eeeeeanaans 115
Figure 15: Google reCAPTCHA SEHINGSccovviiiiiiiii e 116
FIQUIe 16: LOGIN PAGE ..vuuiiiiiiiiii ettt e e e e e et e e e e et e e e e et e e e eaaaans 117

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Figure 21:

Figure 22:

Figure 23:

Figure 24:

Figure 25:

Figure 26:

Figure 27:

Figure 28:

Figure 29:

Figure 30:

Figure 31:

Figure 32:

Figure 33:

Login with Invalid Credentials. ... 118
INVAlId CAPTCHA e e e 118
UNverified OTP ... 119
OTP resent SUCCESSTUIY.........oviiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee e 120
Email containing OTP......coooiiiiii e 121
LOgIN SUCCESSTUIY ..o 122
Successfully LOGed OUL.......uiviiiiiiiiiiiiiiiiiiiiieiiiieiieeeeeeee ettt 122
T o g 18] oI o=V PP PPPPPPPPPPPP 123
Password guide modal 0N SIgNUP PA0E.......covvieeiiieieiiiiie e ee e 124
SigNuP Error HAaNAINGeiiieecceeeces e e e e e e e eeenees 124
Email VerifiCatioN...........ooiiiiiiiiieeee e 125
Email Verified Page.......ccoooveeiiiiiii e 126
Password reset error handling 1ooieiiiiiiiiiiiicee e 127
Password reset error handling 2ceiiiiiieiiiiicc e 127
Password reset @malil............ueeviiiiiiiii e 128
Password guide when resettingoouuieiiiiiieiiiiecee e 128
Password reset SUCCESSTUL...........oooviiiiii 129

Figure 34: Account [0CKOUL PAJEcoviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 130

Figure 35: Lockout email t0 @dminooeviiiiiiiiiiiiiiiiiiiiieeie e 130
Figure 36: Account locked |0gin PAJE.......ceviiiiiiiiiiiiiiiiiiieiieieeeeee et 131
Figure 37: User notified of locked aCCOUNtcevvviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 131
Figure 38: CONtaCt SUPPOIT PAJEeeereriiiiiiiiiiiiiiiiieiees 132
Figure 39: Customer Support EmMail SUCCESS.........covvviiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee 133
Figure 40: SESSION EXPINY TEST....cuiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeee ettt e e et e e eeeeeeeeeeeeeeeees 134
Figure 41:simulate_progressive_|0CKOUL COUEcoviviviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 135
Figure 42: simulate_progressive_lockout resultlooouviiiiiiieiiiieiiiiciie e 136
Figure 43:simulate_progressive_|ockout reSult2ooovviiiiiiieiiieeicie e 136
Figure 44: simulate_password_expiration COUEccoevuviiiiiiiiieeeieeiiciee e e e e e 138
Figure 45: test_otp_expiration code and reSultS...........ccoovvuuiiiiiiiiieereeeeiie e 139
Figure 46: test_token_expiration code and reSultS...............uveeiiiieeiiieeiiiiiie e 140
Figure 47: simulate_bruteforce COUEooiviiiiiiiiii e 142
Figure 48:simulate_bruteforce resultd.............oooiiiiiii i 143
Figure 49: simulate_bruteforce result2...............iiiiiiiiiiiiie e 143
Figure 50: simulate_distributed _bruteforce codeccccoeeiiiiiiiiiiiiiii e, 145

13

Figure 51: simulate_distributed_bruteforce resultlccooooiiiiiriiiiiiiiii s 145

Figure 52: simulate_distributed_bruteforce result2ccccooeiiiiiiiiiiiiiiii s 146
Figure 53: simulate_distributed_bruteforce result3oiiiiiiiiiici s 146
Figure 54: Concurrent session test and resultS ... 148
Figure 55: PYEST TESUILSoeiiiiiiiiiiiiiiiieeeeeeee ettt 149
Figure 56: Security DashbOardl............ccouuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee et 150
Figure 57: Security Dashboard3............ccouiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeee e 150

List of Tables

Table 1: STRIDE Threat Modellinguuuiiiiiiiiiieeece e 41
Table 2: OWASP Threat Modellinguuuiiiiiiiiiieeece e 42
Table 3: Agile Methodology: Sprint Planningceeiiiieiiiiieeiiieee e 49
Table 4: Tools and Libraries Used for System Developmentcccooevvviiiiiiiiiineeee, 59
Table 5:Security Features vs OWASP and STRIDE Compliancecccoovvveeeeeeen.. 66
Table 6: Usability EVAlUALIONS..........c.ooiiiiiiiiiie e 79
Table 7: System PerforManCeuiiiiiiiiii e e e 80

Table 8: Addressed RESEArCh Gapscooveiiiiiii i 82

Table 9: Challenges, Limitations and Proposed Solutions.............ccccceeiiiiie, 86
Table 10: Research Questions AlIgNMENT.........ooooi i 91
Table 11: Achievement of Research ODbJeCtiVES...........ooooiiiiiiiii 93

15

Chapter 1: Introduction

In order to combat the constant threat of brute force attacks, a recurring problem in
cybersecurity, this dissertation investigates the development of a strong authentication
system. The study focuses on designing and implementing a secure, Python-based
framework within Django, addressing key vulnerabilities in login mechanisms commonly
targeted by automated credential-guessing attempts. The implemented solution
incorporates layered defences such as CAPTCHA, optional one-time password (OTP)
verification, IP-based rate limiting, lockout policies, and real-time monitoring through an
admin dashboard. This project aims to meet the requirements of the MSc Cyber
Security program by providing a comprehensive analysis and a practical solution to
enhance authentication security. It demonstrates mastery of secure system design,
authentication, and attack prevention, aligning with MSc learning outcomes through

applied research, technical implementation, and systematic evaluation.

1.1: Background

Brute force attacks remain one of the most prevalent cybersecurity threats, targeting
authentication systems across various industries (Abdulkader , et al., 2015). These
attacks involve systematically attempting multiple credential combinations to gain
unauthorized access, often exploiting weak or poorly protected login endpoints (Deep,
et al., 2019). When authentication systems lack adequate safeguards, such attacks can
lead to serious consequences, including data breaches and reputational damage (Uma

& Padmavathi, 2013), (Cremer , et al., 2022).

16

Python, a language widely adopted in both academic and enterprise settings, facilitates
rapid web application development through frameworks like Django and Flask
(Nurhaida & Bisht , 2022). However, the default configurations in these frameworks may
not provide sufficient protection against brute-force attacks, making additional security

measures and customisation essential (Grunwaldt, 2019).

1.2: Problem Statement

While several countermeasures, including CAPTCHA, account lockout policies, and
multi-factor authentication (MFA), exist to mitigate brute force attacks, many systems
still suffer from usability challenges, false positives, and bypass vulnerabilities (Zhang,
et al., 2022). Despite the availability of various tools and strategies, Python-based login
systems in particular often lack comprehensive, user-friendly, and adaptive security
measures. This leaves applications vulnerable, especially in high-risk domains like
online banking, e-commerce, and educational platforms (Jimmy, 2024). This research
seeks to develop a Python-based authentication system within Django that incorporates
enhanced security features to address these shortcomings. The goal is to improve upon
existing methods, which, as (Nithya & Rekha, 2023) discuss, require continuous

research and development to stay ahead of evolving threats.

17

1.3: Research Objectives

The aims and objectives of this research are to:

1. Evaluate the effectiveness of existing brute force attack prevention techniques in

Python-based authentication systems.

2. ldentify shortcomings in current solutions and explore potential enhancements.

3. Develop a Python-based authentication security solution within Django that is

tailored for small organizations.

4. Evaluate the usability and effectiveness of the proposed solution, ensuring a

balance between strong security and user convenience.

5. Recommend cost-effective security measures for organizations with limited

resources.

Ultimately, this research aims to enhance authentication security against brute force

attacks while maintaining secure usability, particularly for resource-limited organizations.

1.4: Research Questions

The primary research question guiding this study is: What are the most effective
methods to prevent or mitigate brute force attacks in Python-based login

systems? Below are additional research questions:

1. What vulnerabilities in Python-based login systems make them prone to brute

force attacks?

18

2. What are the advantages and limitations of current brute force prevention
mechanisms implemented in Python-based systems?

3. How can Python libraries and built-in functionalities be leveraged to strengthen
the security of login systems against brute force attacks?

4. How can security measures be integrated into Python-based login systems to

mitigate brute force attacks without compromising user experience?

1.5: Significance of the Study

This study specifically falls under the Authentication and Authorization knowledge area
within the Secure System Design and Architecture category of CyBOK (CyBOK, 2021).
It aims to assess, enhance, and develop more effective authentication methods to
mitigate brute force attacks. By incorporating better preventive techniques into Python-
based authentication systems, unauthorized access can be minimized while maintaining

usability for legitimate users (Gollmann, 2021).

This research contributes to cybersecurity by proposing an advanced authentication
model that strengthens resilience against brute force attacks. Its conclusions aim to help
organizations implement more secure python-based authentication frameworks.
Additionally, by addressing the vulnerabilities in current systems, this research aligns
with the broader goal of creating more secure and reliable authentication processes
(Burrows, et al., 1989), (Shrivastava, et al., 2024). (Abdulkader , et al., 2015) points out
that understanding the vulnerable points and potential attacks is crucial in developing

effective authentication systems.

19

1.6: Dissertation Structure

Chapter 2 reviews existing literature related to brute force attacks and Python-based
security practices. Chapter 3 details the methodology and system design, including
threat modelling, and ethical and professional considerations. Chapter 4 presents the
implementation strategy and all the simulations and security tests performed. Chapter 5
provides a critical discussion of the findings/results, evaluating the system’s
performance against established benchmarks. Chapter 6 concludes with key findings,

contributions, limitations, and recommendations for future research.

Chapter 2: Literature Review

This chapter provides a review of existing literature on authentication security
mechanisms, focusing on their effectiveness against brute force attacks. It examines
traditional and modern authentication methods, countermeasures, and their limitations,

highlighting the need for enhanced security solutions.

2.1: Overview of Authentication Security

Authentication security encompasses various methods to verify user identities before
granting system access (Farik, et al., 2016). These methods are categorized into
traditional and modern authentication techniques, each with its own vulnerabilities, as

discussed below:

20

2.1.1: Traditional Authentication Methods

Password-Based or Single-Factor Authentication (SFA): The most common
in web authentication method (Wang & Sun, 2020), but its inherent vulnerabilities
make it a prime target for brute force attacks (Abdulkader , et al., 2015). Users
often choose weak or easily guessable passwords, and password databases are
susceptible to breaches, exposing credentials to attackers (Papathanasaki, et al.,
2022). Techniques like password salting and hashing are employed to mitigate

these risks, but are not foolproof.

CAPTCHA: A common countermeasure to differentiate between human users
and automated bots (Papathanasaki, et al., 2022). CAPTCHAs can deter
automated brute force attacks, but often introduce usability challenges and may
be bypassed by sophisticated bots or CAPTCHA-solving services (Vugdelija, et

al.,, N.D.).

2.1.2: Modern Authentication Methods

Two-Factor Authentication (2FA): To improve security, 2FA has been widely
adopted. This method requires users to provide two separate pieces of evidence
to authenticate their identity; something they know (a password) and something
they have (One Time Pin/Password (OTP), hardware security token, or biometric
feature) (Velasquez, et al., 2019). Though it strengthens protection, challenges

remain such as phishing and SIM swapping attacks (Farik, et al., 2016).

21

Multi-Factor Authentication (MFA): This further strengthens security by
requiring evidence from at least two different categories: something you know
(password), something you have (security token), and something you are
(biometric feature) (Papathanasaki, et al., 2022). Despite its strengths, MFA
faces challenges such as:

o Implementation complexities,

o Usability concerns,

o User resistance,

o The potential for bypass (Phan, 2008), (Farik, et al., 2016), (Mohammed &

Dziyauddin, 2023).

Although more secure than Single-Factor Authentication (SFA), it still has
vulnerabilities due to design flaws, and not all implementations guarantee
enhanced security (Wee, et al., 2024). Moreover, only a small percentage of MFA
schemes use three or more factors, thus limiting their overall effectiveness

(Wang, et al., 2023).

Biometric Authentication: Such as: fingerprint scanning, facial recognition, and
voice recognition; offer a more secure alternative to passwords (Newman, 2009).
These methods are more resistant to brute force attacks, but they are vulnerable
to other types of attacks, such as spoofing and replay attacks (De Abiega-

L'Eglisse, et al., 2022).

22

Passwordless Authentication: Aims to eliminate passwords entirely by
leveraging methods like biometric data (fingerprint or facial recognition),
hardware tokens, or cryptographic keys (e.g., WebAuthn) (Parmar, et al., 2022).
While they offer higher security and ease of use, adoption is still limited due to

technical and user experience challenges (Yusop, et al., 2025).

Mobile Application Authentication: Toward secure mobile applications through
proper authentication mechanisms, it's important to analyse collected data

accurately (Albesher, et al., 2024).

Graphical Passwords: Using images, patterns, or gestures that theoretically
offers improved security over traditional alphanumeric passwords (Golofit, 2007).
They leverage human visual memory, making authentication both secure and
user-friendly, especially against cyber threats like brute-force attacks and
phishing (Raza, et al.,, 2012). However, their effective security can be
compromised by predictable user behaviour, potentially making them vulnerable

to informed guessing attacks (Golofit, 2007).

Blockchain-based Authentication or Decentralized Identity Management:
Using Ethereum network, MetaMask application and others, this method uses
cryptographic techniques such as: public-private key pairs, digital signatures, and
multi-factor authentication (Park, et al., 2023). Strong cryptographic algorithms
make private keys highly resistant to brute-force attacks. However, poor key

management such as: insecure storage or weak passphrases; can introduce

23

vulnerabilities (Rivera, et al., 2024). Additionally, while blockchain itself is secure,
associated authentication mechanisms, such as: wallet passwords or recovery
phrases; can still be targeted by brute-force attacks if not properly protected

(Grimes, 2020).

2.1.3: Authentication Methods Comparison

Password- Traditional | Simple to Vulnerable to Low (easily

Based implement guessing, phishing | targeted)

Authentication

CAPTCHAs Traditional | Blocks Usability issues, Moderate

automated bots | bypassed by Al

MFA and 2FA | Modern Adds layered Implementation High
security complexity

Biometric Modern Unique Spoofing, replay High

Authentication biological traits | attacks

Blockchain- Modern Cryptographic | Weak key Very High

Based security management risks

Authentication

Adaptive Modern Dynamic risk Dependency on High

24

Authentication assessment behavioural data

Figure 1:Traditional vs. Modern Authentication Methods

2.2: Brute Force Attacks and their Techniques

Brute force attacks involve systematically attempting numerous combinations of

usernames and passwords to gain unauthorized access to a system or account (Cleary,

2024). Here's a breakdown of common techniques:

Simple Brute Force: Involves trying every possible combination of characters
until the correct password is found. The length and complexity of the password
determine the time it takes to crack it (Contrast Security, 2021), for instance, a
password consisting of only lowercase letters will be far easier to crack than one

that includes uppercase letters, numbers, and symbols.

Dictionary Attacks: This method uses a pre-defined list of common words and
phrases, often obtained from dictionaries, books, or online databases, to guess
passwords (Raza, et al., 2012). Attackers may also modify dictionary words by

adding numbers, symbols, or capitalization to increase their chances of success.

Credential Stuffing: Attackers use compromised username/password pairs
obtained from data breaches on other services to try and gain access to
accounts on different platforms (Ba, et al., 2021). This technique is effective
because many users reuse the same credentials across multiple websites and
applications.

25

e Hybrid Brute Force: Attackers combine dictionary words with numbers,
symbols, and capitalization to create a wider range of password guesses (Cleary,

2024).

e Reverse Brute Force: Attackers have a list of known passwords and attempt
them against multiple usernames (Cleary, 2024). This can be effective if the
attacker has obtained a list of commonly used passwords from a data breach or

other source (Hamza & Al-Janabi, 2024).

e Parallel Brute Force: Attackers use parallel techniques by dividing the search
space among available resources, thus dividing the average time to success by

the number of resources available (CAPEC, 2018).

e Obfuscation Bypass: Data obfuscation can make brute force attacks more
difficult, but it does not eliminate the risk entirely. Attackers may use various
techniques to bypass obfuscation methods and recover the original data

(Contrast Security, 2021).

2.3: Existing Mitigation Strategies

Brute force cyberattacks are often motivated by financial gain, espionage, data theft,
malware distribution, unauthorized access, identity theft, and the pursuit of power

(Cleary, 2024). To counter these threats, various brute force attack prevention

26

mechanisms have been developed, each with its own strengths and limitations. These

include:

2.3.1: Account Lockout Policies: Involves temporarily disabling user
accounts or/and IP addresses after a certain number of failed login attempts
(Herley & Florencio, 2008). While effective in preventing brute force attacks, these
policies can lead to denial-of-service vulnerabilities and user frustration (Wang, et
al., 2021). Additionally, they can be circumvented through distributed attack

methods or by targeting systems with low lockout thresholds.

2.3.2: CAPTCHA and Bot Detection: CAPTCHAs (Completely Automated
Public Turing test to tell Computers and Humans Apart) and bot detection
mechanisms are widely used to differentiate between human users and
automated bots (Vugdelija, et al., N.D.). CAPTCHAs can vary from:

e Simple math: Basic math problem (e.g., "What is 5 + 3?") to prove
they are human,

e Invisible: Requires no user interaction unless suspicious activity is
detected,

e Fun Captcha/Arkose Labs: Uses visual puzzles and tasks to identify
humans from bots,

¢ And many more.

While these methods can deter brute-force attacks, they may inconvenience users.
Moreover, text-based CAPTCHAs are increasingly vulnerable to machine learning-

based bypasses (Moradi & Keyvanpour, 2015). Although CAPTCHASs can be over 90%

27

effective for humans and under 1% for bots (Tariq, et al., 2023), they are not sufficient
on their own. For stronger protection, it should be combined with complementary

measures such as IP rate limiting and OTP; for a more secure, layered defence.

2.3.3: Rate Limiting and IP Blocking: Rate limiting restricts the number of
login attempts allowed within a specific time frame (Tamilkodi, et al., 2024).
However, it can be bypassed through distributed attacks originating from multiple
IP addresses, proxies or VPNs (Anon, N.D.). Additionally, it may lead to false
positives if users share IPs or use dynamic IPs. While IP blocking involves
blocking traffic from specific IP addresses that are associated with malicious

activity (Nurhaida & Bisht , 2022).

2.3.4: Multi-Factor Authentication (MFA): Enhancing authentication

security by requiring additional verification methods (Zhang, et al., 2018).

2.3.5: Adaptive Authentication: Using machine learning algorithms to
analyse user behaviour and detect anomalous login attempts (Najafabadi, et al.,
2015). Thus adjusting security measures based on the risk level of each login

attempt.

2.3.6: Machine learning algorithms: For detecting brute force attacks at
the network level, using features extracted from network flow data (Najafabadi, et

al.,, 2015). These models evaluate the risk of authentication attempts and can

28

trigger additional security steps, such as multi-factor authentication, for high-risk

logins (Hamza & Al-Janabi, 2024).

2.3.7: Device Fingerprinting and Behavioural Analysis: Techniques such
as device fingerprinting, which tracks the devices used for logins, and behavioural
analysis, which monitors user login patterns, can be used to identify suspicious

login attempts and prevent brute-force attacks (Nikiforakis, et al., 2013).

2.3.8: Encryption and Password Salting: Enhances password security by
adding a unique, random string (salt) to each password before hashing. This
prevents attackers from using precomputed hash tables (rainbow tables) to crack

multiple passwords at once (Vugdelija, et al., N.D.).

2.3.9: Ensuring Effective Password Management: Best practices
include: using complex and unique passwords, avoiding easily guessable
personal information, and refraining from reusing passwords across multiple
accounts (Information Commissioner's Office, 2024), (Das, et al., 2014).

Administrators and developers play a critical role in enforcing these measures by:

o deactivating unused accounts,

o implementing strict password policies,

o mandating periodic password updates (e.g., every 90 days),

o establishing complexity requirements to strengthen overall security,

o etc. (Owens & Matthews, N.D.).

29

2.3.10: Intrusion Detection Systems (IDS): These solutions (Network-
based and Host-based) analyse network traffic and system logs to detect
repeated failed login attempts, unusual access patterns, and high-volume
authentication requests that may indicate a brute force attack (Idhom, et al.,

2020).

2.3.11: Artificial Intelligence (Al): Just as Machine Learning, both of them
detect anomalies in login behaviour (Velgekar, et al., 2021). By analysing user
patterns, these technologies can identify unusual login attempts that may indicate

brute-force or credential-stuffing attacks.

2.4: Limitations of Existing Solutions

Although existing security measures offer some level of protection, they often present
usability concerns, high false positive rates, and vulnerability to social engineering

attacks (Vugdelija, et al., N.D.).

Additionally, solutions like Intrusion Detection System (IDS) alone are insufficient to stop
brute-force attacks, highlighting the need for a multi-layered approach. (Vugdelija, et al.,
N.D.). A robust and continuously evolving authentication framework is essential

(Weingart , 2002).

30

2.5: Challenges in Securing Authentication Systems

While significant strides have been made in improving authentication security,

challenges remain. Some of the most pressing issues include:

2.5.1: User Resistance and Usability Concerns: Advanced security
measures such as MFA and CAPTCHA can impact the user experience. Users
often resist changes that complicate the login process, especially if the new
mechanisms introduce friction in their day-to-day interactions with systems

(Olayinka , et al., 2024).

2.5.2: Scalability: As organizations scale, maintaining secure and effective
authentication systems becomes increasingly complex (IndiaFreeNotes, 2023).
Solutions like rate limiting and CAPTCHA must be carefully balanced to ensure
they do not disrupt legitimate users while effectively preventing attacks (Moradi &

Keyvanpour, 2015).

2.5.3: Evolving Attack Methods: Cybercriminals continuously develop
new tactics to bypass security measures. For instance, attackers may use botnets
or distributed brute-force attacks to overcome IP-based rate limiting, making it

essential to continuously update defence mechanisms (Aslan, et al., 2023).

31

2.6: Research Gap

Despite the widespread use of traditional and modern authentication methods, such as:

password-based authentication, CAPTCHA, account lockout policies, and multi-factor

authentication; significant challenges remain in preventing brute force attacks,

especially for small organizations with limited resources.

Key gaps in current solutions include:

Effectiveness of Multi-Layered Defence Mechanisms: While individual
defence strategies like CAPTCHA, rate limiting, and account lockout have been
well-studied, there is limited research on how to effectively combine these
mechanisms into a robust, multi-layered defence strategy (Lu, et al., 2018),

(OWASP, N.D.).

This is critical for mitigating brute-force attacks, as attackers often exploit gaps in
isolated measures. More research is needed to develop integrated, adaptive

authentication systems that can respond to evolving threats.

Usability vs. Security Trade-off: Many existing countermeasures, such as strict
account lockout or Multi-Factor Authentication (MFA) or frequent CAPTCHA
prompts; can frustrate legitimate users and disrupt workflow, particularly in

environments where user experience is critical (Olayinka , et al., 2024).

Striking the right balance between robust security and a seamless user
experience remains a challenge for many organizations (Downey & Laskowski,,

1996) .

32

False Positives and Administrative Overhead: Static rate limiting and lockout
policies can result in false positives, inadvertently blocking legitimate users. This
leads to increased support requests, administrative overhead, and user
dissatisfaction (Nurhaida & Bisht , 2022). Addressing this without sacrificing

security is a significant gap in current solutions.

Resource Constraints: While advanced solutions such as: adaptive
authentication or machine learning-based or Artificial Intelligence (Al)
approaches; show promise in improving security, they are often too complex or
resource-intensive for smaller organizations to implement and maintain
effectively (Aslan, et al., 2023). This presents a barrier to adoption, leaving these

organizations vulnerable to brute-force attacks (Sarveshwaran, et al., 2023).

Bypass Vulnerabilities: Despite improvements in security measures, attackers
continue to discover ways to bypass traditional defence mechanisms (Grimes,
2020). For example, distributed IP attacks can bypass rate limiting, and
CAPTCHA-solving bots are readily available, undermining the effectiveness of

these defences (Certus Cybersecurity, 2023).

Complexity of Blockchain for Decentralized Authentication: Blockchain
offers potential for decentralized identity management and enhanced

authentication security (Deep, et al., 2019).

However, its application in preventing brute-force attacks is still in the early

stages. Further research is needed to explore how blockchain can deliver

33

tamper-proof, decentralized authentication without relying on centralized systems

(Rivera, et al., 2024).

This research addresses these gaps by:

Developing a Python-based authentication system using Django that
incorporates multiple, practical security measures such as: static rate limiting,
progressive account lockout, and multi-factor authentication; to provide a layered

defence against brute-force attacks.

Focusing on solutions that are straightforward to implement and maintain,
making them accessible for organizations with limited technical or financial

resources.

Evaluating the usability and effectiveness of these mechanisms to ensure
that security improvements do not come at the expense of legitimate user access

and productivity.

Providing a cost-effective, scalable authentication framework that can be
adopted by small organizations, directly addressing the limitations found in

current brute-force attack prevention strategies.

By targeting the balance between robust security and practical usability, this project

seeks to provide a cost-effective and scalable authentication framework that can be

readily adopted by small organizations, while directly addressing the limitations

observed in current brute force attack prevention strategies.

34

Chapter 3: Methodology

This chapter presents the methodology used in the design, development and evaluation
of a secure Django-based login prototype system to prevent brute force attacks. It
details the research approach, threat modelling, system development planning, ethical
considerations, data collection methods, and they align with the research objectives and

gaps discussed in Chapter 2.

3.1: Research Design

A Design Science Research (DSR) methodology was adopted as it is well-suited for
solving real-world problems through the creation of functional IT artifacts. DSR
emphasizes artifact creation, evaluation, and contribution to practice and knowledge

(Hevner, et al., 2004). A mixed-methods approach was used where:

e Quantitative methods: Collecting and analysing system logs, lockout rates, OTP
use, and response times during simulated attacks, with a focus on CAPTCHA
and OTP validation, as well as dashboard analytics to assess the effectiveness of

authentication mechanisms (Bhatia, 2018).

e Qualitative methods: Literature review, STRIDE/OWASP threat modelling,
internal assessments and heuristic evaluation to identify security risks and

usability improvements (Creswell, 2017) .

Agile principles supported iterative testing and refinement across development sprints,
enabling both theoretical and practical insights into authentication security (Sutherland,

2014).

35

3.1.1: Methodological Framework:

This study followed the DSR methodology which includes the following key steps

(Hevner, et al., 2004):

DSR Step

Activities

Tools/Techniques

1. Problem

Identification and

Identified brute-force attack threats

and usability/security issues in

e Literature review,

e STRIDE threat

Motivation existing authentication methods. modelling
e OWASP threat

modelling

2. Define the Outlined security goals: e Research

Objectives of a e Multi-layered authentication questions,

Solution (CAPTCHA, 2FA, rate limiting), e system objectives,
e Usability and scalability. e sprint planning

3. Design and Developed Django-based e Python,

Development authentication system with integrated | ¢ Django,
brute-force mitigation techniques. e SQLite3,

¢ Agile methodology

4. Demonstration

Conducted brute-force simulations
using custom scripts and automated

tools.

e Simulation tools,
e CLl-based attack

scripts

5. Evaluation

Evaluated system through:

¢ functional testing,

¢ Manual testing,

e brute-force

36

¢ usability heuristics, simulation tools,

e threat models (STRIDE, OWASP). e dashboard

analytics
6. Communication e Documented and presented the e Academic writing,
system and findings through this e GitHub repository,

dissertation and future publications. | ¢ Presentation

e E-portfolio

3.1.2: Justification for Python and Django:

Python was selected for its simplicity, rapid development capabilities, and robust
libraries that support secure web application development (Lutz, 2013). Between
popular frameworks, Django was chosen over flask because it offers extensive built-in
features and support for libraries for user authentication, database integration, and form
validation (Django Software Foundation, 2023). This makes it ideal for implementing a
structured and secure authentication system. In contrast, Flask requires more manual
setup and third-party extensions, which can introduce inconsistencies or additional

vulnerabilities (Devndra, 2020).

While Python may lack the performance of languages like C or Java, its readability and
community support make it suitable for secure web application development. However,
Django’s default security features require customization and hardening to effectively

defend against brute-force attack (Idris, et al., 2020).

37

3.2: Threat Modelling Approach

Although this research focuses on brute-force attack prevention, broader threat
modelling frameworks such as OWASP and STRIDE were selectively integrated to
maintain focus without diluting the core objective. Instead of applying these frameworks
in full, relevant concepts such as rate limiting, authentication failure handling, and

credential protection were incorporated.

A hybrid approach was adopted, whereby STRIDE was used for architectural threat
identification within the login system, while OWASP served as a reference for secure
implementation, particularly around login abuse and access control (OWASP, 2021),

(Department for Science, Innovation & Technology, 2024)

Additionally, the study also recognizes the evolving nature of authentication threats.
While traditional password-based methods are still common, they remain vulnerable to
brute-force and dictionary attacks, especially when passwords are reused or weak

(Rashidi & Garg, 2021).

As recommended by OWASP (CWE Content Team, 2021) and (NIST, 2025), the system
incorporates layered defences including: CAPTCHA, OTP, and account lockouts; to

reduce the risk of unauthorized access while aligning with modern security standards.

This targeted application of STRIDE and OWASP ensures the authentication system is
both resilient and realistic for deployment in Django-based environments, without

overcomplicating the scope of the research (Khan, et al., 2017).

38

3.2.1: STRIDE Threat Modelling:

STRIDE was applied to assess threats within the core areas of the login system

(Department for Science, Innovation & Technology, 2024), (Khan, et al., 2017). The

following table outlines identified threats and the corresponding mitigations:

STRIDE Threat

Mitigations Applied

Spoofing (impersonating

a user or service)

Mitigated through:

e strong passwords,

e email verification during signup,

e time-based OTP-based-two-factor authentication
(2FA) during login,

e device fingerprinting using user-agent and IP address

logging

Tampering

data or code)

(modifying

Addressed using:

e input validation,

e secure hashing of passwords,
e CSRF tokens,

e Secure session cookies,

e HTTPS

Repudiation

(denying

performing an action)

e Authentication logging using Django Axes whereby
Login attempts, both successful and failed, are logged
with IP and timestamp data to ensure traceability,

¢ device fingerprinting (lockout logging with OS/device

39

info),
email alerts to admin on lockout events,
lockout logs are traceable on security_dashboard and

lockout_stats that has access control

Information Disclosure Sensitive error messages are suppressed,
(exposing confidential data in transit is protected through HTTPS,
information) CAPTCHA (google reCAPTCHA v2),
session expiry,
TOTP expiration (10 min limit),
email OTP used to control access
Denial of Service Progressive account lockout mechanism with
(disrupting service escalating timeouts (5 to 60 mins),
availability) django-ratelimit decorator (@ratelimit(key=...,
rate='5/15m"))
lockout status tracked and enforced via cache,
reCAPTCHA to block automated abuse
Elevation of Privilege Role-based access control on admin views,

(gaining unauthorized

access or privileges)

optional 2FA for privileged users,
enforced password complexity,
forced password expiration,

decorators protect restricted pages,

40

e secure user creation whereby user’s account remains
inactive until the user verifies a time-based email

token and profile tracking

Table 1: STRIDE Threat Modelling

While full STRIDE implementation was beyond the project’s scope, key elements such
as: Spoofing (via authentication hardening) and Denial of Service (via rate limiting);
were selectively applied. This focused use of STRIDE principles ensures alignment with
industry best practices while maintaining a clear emphasis on brute-force attack

mitigation.

3.2.2: OWASP Top 10 Reference for Secure Implementation:

This research does not aim to address all OWASP Top 10 vulnerabilities
comprehensively. Instead, relevant risks were selectively referenced during
implementation to validate the system’s security posture. This ensures adherence to

baseline standards while keeping the focus on brute-force prevention (OWASP, 2021).

OWASP Risks Applied Mechanism

A01:2021 — Broken Access | e Restricted access to administrative views using
Control Django’s built-in permission system and role-based

access logic

A02:2021 - Cryptographic | e Secure password hashing using Django’s PBKDF2,
Failures e use of randomly generated, time-bound tokens for

email verification and OTP

41

A07:2021 - Identification | Implementation of:
and Authentication | e account lockout thresholds,
Failures e Google reCAPTCHA,
e time-based OTP-based 2FA to enforce layered
authentication security,
e username/IP based progressive lockouts,
e time-based email verification during signup
A09:2021 - Security | e Login attempts logged in LockoutLog,

Logging and Monitoring

admin alerted via send_mail() on lockout,

Failures o logs include device, OS, user agent, and location (if
available)
e Error handling
A10:2021 - Server-Side | e External requests (e.g., IP location during lockout)

Request Forgery (SSRF)

are isolated,
error-handled and sanitized,
minimal reliance on external APIs,

hardened request handling in lockout_stats

Table 2: OWASP Threat Modelling

3.3: System Development Approach: Agile Methodology (Adapted for Solo

Development)

A lightweight Agile development methodology was adopted to manage implementation

efficiently, tailored for solo research without team collaboration or external feedback

42

(Purba & Ramli, 2022). Agile’s iterative and flexible nature supported continuous

development, integration of security features, testing, and refinement in manageable

increments (Moyo & Mnkandla, 2019).

3.3.1: Sprint

development was adapted, each lasting approximately 3-5 weeks.

Planning:

A solo-adapted Agile methodology guided

Sprint Key Tasks Objectives Tools /
Frameworks
Sprint 1: e Set up Django | e Create clear and | e Django,
e System project minimalistic pages | e Allauth,
Initialization, e Extend Django | e Set-up the views | ¢ HTML/CSS
e Project Setup, UserProfile and urls.py
e User e Configure user | e Install and
Management models upgrade Django
e Basic Ul templates dependencies like
pipenv, etc
Sprint 2: e Configure user | e Establish user | ¢ Django Auth
e Configuration models registration and | ¢ HTML/CSS,
of Login, e Ensure Input s login foundation | ¢ CSRF token
Signup, validated on forms with verified | o Forms.py,
Customer e Error handling accounts e send_mail,
Support Forms messages e Improve UX and fail_silently=
and Pages e Handle email resilience under True

43

failures silently
Disable user

enumeration

failure

Sprint 3: Configure basic Establish Django
e Basic authentication functional base for HTTP/CSS
Authentication Configure password authentication flow Decorators.
e Configure validators and secure py
Decorators for Create and account creation. CSRF token
Access Control configure decorators Establish and set
and to protect views the guidelines that
Authorization Create a modal that can help the user
e Password helps user know the Create stronger
Guidelines guidelines of passwords.
Modal creating a stronger
password as per the
system settings.
Sprint 4: Enforce session Strengthen Django
e Session expiry & logout rules session security, Settings,
Management, Enforce concurrent usability, and Sessions,
e Forced sessions ensure feature CSRF,
Password Password rotation completeness Alerts
Expiry, after 90 days Enforce access HTML/CSS
e Password Password Expiry controls decorators

44

Reset Option
e Final
Hardening (e.g.

Authorization

form
Password reset
option

Add error handling,

e Giving user option
of resetting the
password in the

event of the user

and Access user messaging forgetting the
Control) Final internal password.
usability review
Protect views with
decorators

Sprint 5: Implement django- | e Prevent brute- | e Django-

e Brute Force ratelimit force login ratelimit,
Detection, Cache-based attempts via | e Django-

e Progressive lockout logic IP/user-based axes,
Lockout Design LockoutLog throttling and | e Cache,
System model caching e Custom

e Rate Limiting Create a lockout middleware,

page for after failed e HTML/CSS
attempts
Set progressive
lockout thresholds
(3/5/10)
Sprint 6: Integrate django- | ¢ Enhance e PyOTP,
e Time-based two-factor-auth and authentication django-two-

45

OTP-Based PyOTP robustness using factor-auth,
Two-Factor Configure OTP optional email- | ¢ SMTP email
Authentication expiration (for 10- based OTP with | e Timezone
(2FA) minutes) expiration
Handle resend OTP enforcement
and expired token
flows
Internal test cases
for OTP logic
Sprint 7: Setup time-based User remain | ¢ Django
e Time-based email tokens to be inactive until email | ¢ SMTP
Email Token sent to user during verification is email,
Generator and signup successful
Verification User is inactive until
during Sign up the email is verified
Sprint 8: Replace hCaptcha Block automated | e Google
o CAPTCHA with Google and bot-based reCAPTCHA
Integration & reCAPTCHA v2 login abuse V2,
Bot Defence Server-side e Requests,

CAPTCHA validation
Trigger CAPTCHA
dynamically after 3

failed logins

e JavaScript

46

Add CAPTCHA fall

logging

Sprint 9: Collect device info: | e Provide forensic send_mail

e Logging, OS, browser, IP, and threat insights user agent

e Device location parser,
Fingerprinting Log events in IP/geolocati

e Geolocation LockoutLog with on,

e Admin Alerts geolocation LockoutLog

Notify admin via
email for suspicious
activity

Sprint 10: Apply Nielsen’s 10 | e Ensure usability Nielsen

e Heuristic usability heuristics, aligns with Heuristics,
Evaluation & Internal security. manual UX
UX Review walkthroughs with testing

test accounts,
Refine navigation
and Ul clarity

Sprint 11: Create dashboard | e Visualize security Django,

e Dashboard app threats and user Chart.js
Visualization Develop behaviour GeolP2,
for Admin security _dashboard Recharts,
Security page with Chart.js RBAC,

47

Analytics Build lockout_stats p e HTML/CSS
e Creation of age e VScode,
lockout_stats Implement heatmap
page for of failed login
Logging geolocation
Visualize
CAPTCHA/OTP
success/fail rates
trends
Role-restricted and
Admin-only access
to dashboard
analytics and
lockout_stats
Sprint 12: Simulate brute-force | o Validate e Internal
e Simulation & attacks robustness under simulation
Testing Log responses to attack scenarios scripts like:

failed login attempts
Evaluate false
positives, OTP
bypass attempts

Confirm the security

dashboard logs data

Brute force

attack

simulation

test

48

Sprint 13:

e Final testing and

e Final Polish bug fixes
and e Code cleanup, inline
Documentation comments,
docstrings,

e Document sprint

retrospectives

e Ensure project

quality

maintainability

and

e VS Code,
e GitHub,

e Markdown

Table 3: Agile Methodology: Sprint Planning

3.3.2: Backlog Management and Prioritization: A backlog of tasks was

maintained and updated regularly based on system performance and technical

feasibility. Features were prioritized based on their:

Alignment with research objectives (e.g., brute force protection)

Technical feasibility

Interdependencies (e.g., CAPTCHA after lockout mechanism)

Security criticality (e.g., enforcing OTP before role-based access)

Tasks were re-prioritized after retrospectives if tests and simulations indicated

weaknesses in security response or usability friction. For example, integrating

CAPTCHA in Sprint 8 was time-consuming due to challenges with validation

handling during testing. As a result, | temporarily moved on to later sprints and

returned to Sprint 8 afterward to complete the integration.

49

3.3.3: Self-Evaluation and Reflection: At the conclusion of each sprint, a

solo retrospective was performed focusing on:

Progress vs. expected sprint goals

Issues encountered (e.g., CAPTCHA token timing, OTP delays)

Feedback from internal testing and simulations

Code quality and maintainability review

Lessons learned informed the planning for the next sprint. For instance, after
Sprint 5, the need for granular lockout logging (device fingerprinting, geolocation)

became apparent, leading to its inclusion in the cycle.

3.4: Data Collection

Since no human participants were involved, the study relied on internal simulations,
automated system testing, simulated attack scenarios, heuristic evaluation, and system
event logs (Norman & Kirakowski, 2018). These approaches provided comprehensive
insights into the system's robustness, performance, and resistance to brute-force

attacks.

3.4.1: Literature Review (Qualitative): A systematic literature review was
conducted to analyse existing authentication security mechanisms, brute force
attack methodologies, and countermeasures (Velasquez, et al., 2018). This

helped establish a foundation for the proposed security enhancements.

50

3.4.2: Test Simulations (Quantitative): A series of controlled test
simulations were designed and executed to evaluate the behaviour of the Django-
based secure authentication system under various conditions (Palmieri, 2013).
These tests focused on replicating real-world attack patterns and legitimate user

behaviour.

3.4.3: Usability and System Feedback Evaluation using Heuristic
Evaluation (Qualitative): With no external users involved, usability was
assessed internally through heuristic evaluation based on Nielsen’s 10 Usability
Heuristics (Nielsen & Molich, 1990). The system’s interface and interaction flows
were systematically reviewed, focusing on error prevention, clarity, recovery from
failures, and feedback mechanisms (Downey & Laskowski,, 1996). Documented
observations guided interface refinements to enhance overall usability while

maintaining a high level of security (Lodhi, 2010).

3.4.4: Logging and Dashboard Analytics: Detailed logs of authentication
events were recorded and further analysed using the custom-built admin

dashboard. The dashboard visualized key security metrics such as:

e Lockout frequency by IP address and time

e Geolocation of failed login attempts

e CAPTCHA failure rates

« OTP validation success and failure trends

51

These visual insights helped validate the effectiveness of implemented security
controls, identify abnormal activity patterns, and ensure that lockouts and

challenges were functioning as intended.

3.5: Data Analysis Approach

Each security feature implemented in the Django authentication system was analysed
based on predefined success criteria and the outcome of controlled simulations. The
analysis considered the system's resilience to attacks, usability under pressure, and the

effectiveness of feedback mechanisms.

3.6: Ethical and Professional Considerations

Ethical and professional standards were maintained throughout the research process.
All testing were performed in a closed development environment using artificial user
accounts and simulated data, ensuring that no real individuals or personal data were

involved at any stage (Sanjari, et al., 2014).
The following ethical principles and professional practices were applied:

e« Privacy and Consent: No individual user data was collected or used. All
simulations utilized are fictitious credentials generated for testing purposes only.
No human subjects were involved, thus eliminating the need for consent

procedures (Europe Commission, 2013).

52

o Confidentiality: All logs and test data were anonymized using hashed identifiers
and securely stored on an encrypted local drive. After the analysis was
completed, the data was permanently deleted to prevent future access or

misuse.

e GDPR Compliance: The project adhered to GDPR principles by implementing
secure coding practices, input validation, and strict access controls. Automated
logging mechanisms were configured to exclude any potentially identifiable
information, and simulated data was processed in accordance with data

minimization principles (Europe Commission, 2013).

e Privacy and Data Protection: Authentication logs and security events were
generated via automated brute-force attack simulations. These logs were
anonymized, and no real IP addresses, usernames, or emails were involved. All
datasets were either synthetically generated or derived from publicly available

academic resources and not from human participants (Sanjari, et al., 2014).

Chapter 4: System Design and Implementation

This chapter outlines the design and implementation of the Django-based authentication
system developed to prevent brute force attacks. It details the system’s architecture, key
components, and the security features integrated, such as CAPTCHA, rate limiting,
OTP-based 2FA, and account lockout. The implementation was guided by best
practices from OWASP and STRIDE, with a focus on usability, modularity, and security.

The chapter also covers testing procedures, dashboard analytics, and development

53

challenges. To support the explanations, relevant screenshots of the Django application

and code snippets are included in the appendices.

4.1: System Requirements and Specifications

The prototype was developed using the Django web framework (Python-based), chosen
for its robustness and modular security features (Dauzon, et al., 2016). The

development environment includes:

e Programming Language: Python (3.10+)

e Web Framework: Django (4.x)

e Database: SQLite (for development), PostgreSQL (recommended for
deployment or production)

e Authentication Libraries: Django Allauth, PyOTP, grcode

e Frontend: HTML5, CSS, JavaScript (for user interactions).

e Development Tools: Visual Studio Code, GitHub, and Git for version control

e Operating System: Windows 11

The authentication system is built on Django’s Model-View-Template (MVT)
architecture, which cleanly separates the data model, user interface, and application

logic (Django Software Foundation, 2015).

4.1.1: System Architecture and Design: Built using Django, the system
follows a modular design that separates logic, presentation, and data layers to
enhance maintainability, scalability, and security (Nurhaida & Bisht , 2022),
(PyLessons, 2022), (Django Software Foundation, 2023). The components

making up the login system include:

54

e« Django Views: views.py to handle login, signup, lockout, reCAPTCHA, OTP

email verification logic.

o« Templates: templates.py to render HTML for User Interface, i.e. login, signup,

lockout, home and other pages.

e Models: models.py to store user data, OTP codes, lockout logs.

e Forms: forms.py to validate user input for login, registration and customer

support forms.

« Middleware: middleware.py for failed login detection, session tracking.

« Signals: signals.py to automate user profile creation, lockout email alerts.

o Utilities: utils.py to provide helper functions for OTP generation, email sending,

and CAPTCHA verification.

o Tokens: tokens.py to manage secure email verification & OTP generation.

o Decorators: decorators.py to protect views (e.g., RBAC, 2FA enforcement).

e Settings: settings.py to configure security policies (sessions, email, rate limiting,

OTP expiry, etc)

e Userlogs: userlogs.py to sore failed login attempts, logs data for admin analytics

dashboard and lockout stats page.

Below is a clear visual representation of the flow of the components from the user

through the Django authentication system.

55

Nache with

System Architecture and Componentﬂﬂ!!!’:.’::‘!&'“
Interaction

Figure 4.2: System Architecture and Component Interaction

4.1.2: Tools and Libraries Used: The following, as implemented from

(Django Software Foundation, 2015), (Django, N.D.), (Dauzon, et al., 2016),

56

(PyLessons, 2022), (Makai, N.D.), (Django Software Foundation, 2023),

(Nurhaida & Bisht , 2022), (Socol, N.D.); are the python and Django tools and

libraries used in the development of the login system prototype.

Tool / Library

Purpose

Django (core framework)

Web application framework.

requests

Sends HTTP requests to
external services, such as

Google reCAPTCHA.

django.contrib.auth

Handles authentication,
login, logout, and password

management.

django_ratelimit

Implements rate limiting.

django_axes and axes.signals.user_locked out

Tracks and enforces account
lockouts based on repeated

login failures.

pyotp

Generates time-based OTPs

(one-time pins/passwords).

django.contrib.auth.tokens.default_token_generator

Generates secure email

verification tokens.

django.utils.timezone

For timezone-aware

timestamps and session

57

tracking.

django-lockout

Lockout mechanism

google reCAPTCHA

Prevents bot logins by

verifying human interaction

django.core.cache

Stores failed login attempts

for temporary lockout

enforcement.

logging Records login attempts,
errors, and lockout events
for auditing.

http.client To make HTTP requests to

ip-api.com for geolocation

lookup based on IP.

user_agents

Parses user-agent strings to
identify device and operating

system info.

messages

To provide user feedback via
status messages on the

frontend.

django.core.mail / EmailMessage

Sends account verification

and lockout notification

emails.

58

utils.py Contains helper functions
like OTP generation and

email sending.

Custom forms and models Manage user input validation
and data storage (e.g.,

OTPs, lockout logs).

Chart.js Analytics dashboard

Table 4: Tools and Libraries Used for System Development

4.2: Implementation Strategy

Focusing on brute force attack prevention, (Django Software Foundation, 2023),
(PyLessons, 2022); the authentication system is enhanced with both Django inbuilt and

custom security mechanisms such as:

e Password Validators: Enforce strong passwords using Django’s built-in
validators, reducing the risk of credential stuffing and dictionary attacks. For
instance: passwords should have more than 8 characters, not be the same as

the last 5 passwords, etc (Crudu & Team, 2024).

e Multi-Factor Authentication (MFA): Integrated with a Time-based One Time Pin
(TOTP) during login, users receive an OTP in their email inbox (or in spams
folder) and they must provide the correct OTP within the time window (10

minutes) so as to complete login (Mayorga & Yoo, 2025).

59

Rate Limiting: Applies to username and IP to prevent distributed brute-force
attacks (Anon, N.D.). Failed attempts are cached with a 5 attempts/15-minute
timeout, and exceeding thresholds triggers lockouts and notification emails

(Socol, N.D.).

Google reCAPTCHA v2 Integration: Implemented and verified on the server-
side before the authentication, effectively blocking automated login attempts and
mitigating bot threats. This version was chosen for its advanced risk analysis
engine that assesses user behaviour beyond static challenges (Google, 2025),

(PyLessons, 2022).

User Enumeration Prevention: This happens when an attacker can distinguish
between valid and invalid usernames based on login error messages (Macsinoiu,
2024). To prevent this, the login view’s error message was modified from "Invalid
username or password”, to “Invalid Credentials”. This allows an attacker not to

determine whether a username exists (Agghey , et al., 2021).

IP and Device Fingerprinting: After a lockout, it captures device info, OS,
browser, and location via IP lookup (Yonkeu, 2020). The captured information is
then logged to the security_dashboard, lockout stats and the admin also

receives an email alert (Django-Axes, N.D.).

Brute Force Detection: Login attempts are monitored; after a set number of
failed attempts, the system triggers a cooldown or account lockout (Nurhaida &

Bisht , 2022).

60

Hashing: of passwords: Django's default PBKDF2 hashing with SHA256
ensures that user passwords are securely stored and resistant to offline cracking

(Django Software Foundation, 2023).

Signup and Email Verification: Users are registered inactive during signup until
they verify their email via a unique, time-sensitive, tokenized activation link
(Olagbuji, 2023). This prevents automated or fraudulent registrations and

ensures the validity of user email addresses (Dauzon, et al., 2016).

Account Lockout (Progressively timed): After 3 failed attempts per username
or 10 per IP, the system locks the account and blocks the IP and username,
respectively, and logs the event with device and OS metadata for forensic
analysis (OWASP, 2025). The account’s lockout time is progressive, whereby

cooldowns are increased after subsequent failures.

Role-Based Access Control (RBAC) and Authorization: Implemented using
custom decorators like @unauthenticated_user, @login_required, and Django’s
built-in @staff_member_required to restrict view access based on user roles and
authentication status (Django, N.D.). Signals are also used to trigger security
actions such as logging failed login attempts or initiating lockouts on

unauthorized access (Nurhaida & Bisht , 2022; Yonkeu, 2020).

Error Handling and User Feedback: Throughout the authentication process,
the system provides clear feedback messages for errors, robust logging and

monitoring through:

61

o Message ‘“Invalid credentials” during login without making it clear if the

cause is invalid password or username.

o During sign up, log in and customer support the user gets clear messages

o Expired OTP during log in

o Expired email verification token during signup

o CAPTCHA failure

o Detailed lockout logging to database (LockoutLog model)

o Automated admin alerts for suspicious activities

o Graceful failure handling in email services (fail_silently=True)

This provides user feedback and logs failures for audit purposes.

e Session Management: Implemented strict session expiration policies and logout
mechanisms after a configurable period of inactivity thus reducing the risk of

session hijacking (Django, N.D.). The system enforces:

o Automatic session expiration after 30 minutes of inactivity

(SESSION_COOKIE_AGE) (Django Software Foundation, 2025)

o Concurrent session prevention through last activity tracking (Fluid attacks:

help center, 2024)

e Forced Password Expiry: Users are prompted to change their password after a
set duration, enforcing periodic credential updates. The forced password rotation

Is every 90 days (PASSWORD_EXPIRE_DAYS check) (Django, N.D.).

62

Logging and Monitoring: Django's logging framework tracks authentication
attempts and anomalies, recording lockout events with details like user agent,
OS, device type, and IP address (Django-Axes, N.D.). When a lockout occurs,
users receive an on-screen notification and are redirected to a lockout page. Alert
emails are sent to administrators, and events are logged in an admin-only
security dashboard and lockout statistics page. This enhances transparency and

enables rapid incident response.

Alerts emailed to the admin: When a user is locked out, the app automatically
sends an email alerting the admin about the incident, thus enhancing

transparency and fast incident response (Django Software Foundation, 2025).

APl Security: Secure REST API endpoints using Django REST Framework

(DRF) and token-based authentication (Django Software Foundation, 2023).

Input Validation: Monitors all the input entered in the forms and shows clear

error/valid messages.

Password Reset Option: Accessed from the login page, the user can reset the

password in the event of forgetfulness (Rashidi & Garg, 2021).

Password Creation Guidelines Modal: Found on the signup, password change
and password reset page, it guides the user in creation of a stronger password

as per the system’s settings (Das, et al., 2014).

Admin Dashboard: A dashboard that the admin uses to monitor Lockout logs,

heatmap data, threat IPs, CAPTCHA stats, etc.

63

e Code Quality and Maintainability:

o Modularization: Logic is separated into utilities, forms, and decorators for

reusability (Django Software Foundation, 2015).

o Logging: All authentication events, errors, and lockouts are logged for

audit and debugging (Django Software Foundation, 2025).

o Extensibility: The system can be extended to support additional factors or
integrate with external identity providers in future development phases

(Nurhaida & Bisht , 2022).

4.3: Security Risk Mitigation and Compliance Mapping

This section maps the implemented security features of the Django authentication
system to specific risks identified through STRIDE threat modelling and the OWASP Top

10 vulnerabilities.

It demonstrates how each security control aligns with secure design best practices and
addresses the threats outlined in the methodology chapter (OWASP, 2021),
(Department for Science, Innovation & Technology, 2024), (Nurhaida & Bisht , 2022),

(Django Software Foundation, 2023).

The summary table below presents each mitigation alongside the corresponding threats

it addresses.

64

Security Feature

OWASP Risk

STRIDE Threat

Implementation in Django

Addressed Addressed System

Email Verification | AO7: Identification | Spoofing Inactive accounts until

(Signup) & Authentication email verified using secure
Failures token

Password A02: Tampering, Django’s default PBKDF2

Hashing Cryptographic Information with SHA-256 hashing

(PBKDF2) Failures Disclosure

Account Lockout | AO7: Identification | Denial of Progressive lockouts via

& Rate Limiting & Authentication Service cache and rate-limiting
Failures

Google AQ7: Identification | Denial of CAPTCHA triggered after

reCAPTCHA v2 & Authentication Service failed attempts; blocks bots
Failures

OTP-based 2FA AQ7: Identification | Spoofing, PyOTP with expiry logic;

(Email OTP) & Authentication Elevation of required on login for secure
Failures Privilege accounts

Role-Based AO01: Broken Elevation of Django decorators and

Access Control Access Control Privilege permission system for view

(RBAC)

restriction

65

Secure Session A02: Tampering Session timeout, CSRF

Management Cryptographic tokens and concurrent
Failures sessions prevention

Suppressed A02: Information Generic login error

Error Messages Cryptographic Disclosure messages; no field-specific
Failures feedback

Device A09: Logging & Repudiation Captures browser, OS, IP;

Fingerprinting & | Monitoring logs to LockoutLog and

IP Logging Failures alerts admin

Admin Alerts A09: Logging & Repudiation, Email notification to admin

(Email) Monitoring Denial of on lockout or abnormal
Failures Service login attempts

GeolP Location A09: Logging & Information Uses GeolP2 to trace login

Tracking Monitoring Disclosure attempt origins and track
Failures lockout patterns

Heuristic Not directly Not directly Aligns system usability with

Evaluation of UX | mapped mapped security controls (e.g., OTP

clarity, CAPTCHA

feedback)

Table 5:Security Features vs OWASP and STRIDE Compliance

66

While the implemented security features align with OWASP and STRIDE, no security
model offers complete protection. Controls such as CAPTCHA and account lockouts
rely on assumptions about attacker behaviour and may be bypassed by advanced or
distributed attacks. Additionally, optional 2FA reduces effectiveness if not enforced
system-wide. Therefore, these measures must be validated through realistic attack

simulations. (Palmieri, 2013).

4.3.1: Secure Authentication Workflow: The activity diagram below
illustrates the end-to-end workflow for user authentication, including both login
and signup processes (Django, N.D.). It integrates security controls such as email
verification, CAPTCHA validation, OTP-based two-factor authentication, and
account lockout logic. It highlights key decision points that mitigate spoofing,

brute-force, and automated attacks.

67

Activity Diagram: Login View Q VisualParadigm

@

Sign up by filling\, Sign up
regestration form) Login
Sign up or
False Log in?
True \Gmter Credential to
(" ’k Login)
Is
Information
Valid? False
((o o o e ')"'° o Get and Enter OTP
device fingerprinting), and
Sends Email Alert to Admin Gnd CARTEHD
True </\/ True 2
™~ \/
Failed Are Is
Fotse Attempts Credentials CAPTCHA
Reached? Valid? Valid?
False Y,
Is OTP
Valid?
True

“Login Successfully” message
then redirects to Home Page

Figure 3: Secure Login and Signup Workflow with Integrated Security Controls

4.4: Testing Procedures

A robust testing strategy is essential to ensure the security, reliability, and usability of
authentication systems (OWASP, N.D.). While no external users were involved, the

system was rigorously tested using custom simulations, unit and integration tests,

68

heuristic evaluation, and dashboard analytics. Testing combined manual interactions

with automated assessments to validate functionality and identify potential weaknesses.

4.4.1: Controlled Simulations: The following controlled simulations
evaluated core defensive mechanisms, documenting inputs, system responses,
triggered alerts, and observable behaviours (Palmieri, 2013). Detailed results are

provided in the appendices.

e Brute-force Attack Simulations: Used scripts to automate login attempts (from
a single IP address), to test the effectiveness of rate-limiting and account lockout

logic.

o Distributed Brute-force attack Simulation: Simulated login attempts from
multiple IP addresses tested the system’s ability to detect and block distributed
brute-force attacks. The lockout mechanism was evaluated for effectiveness

against attacks originating from diverse geographical locations and IPs.

o Token Expiration Simulation: A scenario was created to test the expiration of
authentication tokens after a specified duration. Tokens were manually set to
expire, and the system’s response to expired tokens was observed to ensure that

users were properly logged out and required to authenticate again.

e OTP Expiration Simulation: The expiration of One-Time Passwords (OTPS)
was tested by simulating OTP generation and allowing the expiration time to
elapse. The system was then checked to ensure it would reject expired OTPs,

prompting the user to request a new one.

69

Password Expiry Enforcement: The logic for forced password expiration after
90 days was tested by modifying the test user’s account creation date to 91 days

ago.

Progressive Account Lockout: Tested the cache-based progressive lockout
mechanism with thresholds (e.g., 5, 10, 15 attempts) and verified that

IP/geolocation was correctly logged.

Create User simulation: Since no real users were involved in the testing phase,
a custom create_user script was developed to generate test accounts. This
allowed for consistent simulation of user behaviour across various authentication

scenarios, including login, signup, OTP validation, and account lockout.

Concurrent Session test: Evaluated the system’s handling of multiple
simultaneous login sessions from the same user account to ensure proper

session management and prevent session hijacking or unauthorized access.

4.4.2: Functional System Tests: The following were the functional system
tests done:
Login and Signup Testing: Verified user authentication, input validation, error
handling and password strength validation.
OTP (2FA) Workflow Testing: Confirmed time-based OTP delivery, validation,
and expiration handling using django-otp and django-two-factor-auth.
reCAPTCHA Validation: Ensured that login forms only proceeded when

CAPTCHA was correctly solved, blocking automated and failed attempts.

70

Input Validation: Ensured validation on all user input fields and forms (login,
signup, contact support).

Account Lockout Alert: Tested that admin gets alerted during a lockout and
verified lockout logging with IP and geolocation.

Email Verification: Confirmed proper sending and handling of verification
emails, activation link validation and account status updates.

Access Control and Authorization: Confirmed that pages are only accessible

to authorized users as per their roles.

Logging and Lockout Dashboard Analytics: Verified logging security
dashboard, and lockout stats to enhance transparency and swift incidence

response.

Session and Credential Handling: Validated session timeout policies, session

reinstatement, and logout procedures.

4.4.3: Usability Evaluation using Nielsen's 10 Usability Heuristics:
Since no external users were involved in the testing phase, the usability of the
authentication system was assessed internally using Nielsen's 10 Usability
Heuristics (Nielsen & Molich, 1990), (Lodhi, 2010). Key aspects examined

included:

Clarity of system messages: Clear messages were displayed on CAPTCHA
failure, OTP expiry, and lockout events, example: "Account locked due to multiple

failed attempts"” or "OTP expired."

71

o Consistency of page navigation: The transitions between login, home page,

sign up page, password change, etc.

e Help and Support for error and recovery: A customer support, a resend OTP,
password reset option and a password modal that helps users know how to

create stronger passwords.

« Admin feedback mechanisms: Email alerts generated upon suspicious activity

or lockouts and customer support emails.

e Visibility of system status: Messages that give feedback upon lockout or

verification success.

e User control and freedom: Verified role-based access control for user-specific

views.

« Minimalist Design: The dashboard and authentication pages were designed for

clarity and responsiveness.

Overall, heuristic evaluations confirmed that security controls maintained usability and

provided users with clear, actionable feedback during authentication.

4.4.4: Dashboard Analytics: A custom dashboard analytics page
(security_dashboard) was created using Chart.js and integrated into the Django

“dashboard” app to visualize testing results. The dashboard tracked:

o Failed Login Heatmap: By IP and geolocation (based on request metadata and
geoip2).
e Lockout Frequency: Number of users locked out by day, hour, and IP.

72

¢ CAPTCHA Fail Rate: Visualized failure trends across simulation runs.

o« OTP Usage Analytics: Displayed how often OTPs were generated, expired, and

successfully used.

These insights supported both the testing phase and the evaluation of system
thresholds for brute-force attacks, rate limiting, and account lockouts. They also provide
ongoing Vvisibility into misuse patterns and system health, enabling administrators to

proactively monitor threats and adjust security policies.

4.4.5: Penetration Testing Approach and Tool Justification:

Brute-force attack simulations were conducted using custom Python scripts to emulate
repeated unauthorized login attempts. These tests evaluated account lockouts, rate
limiting, CAPTCHA, and OTP validation. Although industry tools like Hydra and Burp
Suite are standard in penetration testing, custom scripts were used here for better
integration with the system’s architecture and analytics. Future work may incorporate

these tools to enhance testing realism and depth.

4.4.6: Ethical Considerations:

e Privacy and Data Protection (Europe Commission, 2013):

o Test data was anonymized, and

o Real user data was never used in testing environments.

73

o Test logs were securely stored and deleted after analysis, in compliance

with GDPR guidelines.
e User Consent (Europe Commission, 2013):
o No real users participated in the testing phase;

o All usability assessments were based on system logs and test accounts.

4.5: Security vs. Usability Trade-offs

Balancing security with usability is crucial to avoid frustrating users and encouraging
insecure workarounds (Farrukh, 2013). While strict security controls (e.g., frequent
lockouts, mandatory 2FA) are effective in defending against attacks, they can hinder the

user experience. The system addresses this balance by:

e Progressive Lockouts:

An exponential backoff algorithm is used to increase lockout durations (from 15
minutes to 24 hours after 5 failed attempts). This approach thwarts brute-forcing while
allowing legitimate users to recover through self-service unlocks via verified email and

admin override capabilities with MFA confirmation.

74

e Contextual Feedback:

The system provides non-revealing error messages to avoid enumeration
attacks, with clear guidance on post-lockout recovery procedures. Real-time password

strength feedback is integrated, helping users create stronger passwords.

Chapter 5: Discussion and Evaluation of Results

This chapter presents the results of testing and evaluating the Django-based
authentication system developed in this study. It discusses the effectiveness of
implemented security measures, outcomes of brute-force simulations, insights from
dashboard analytics, and feedback on usability. The analysis is aligned with the
research objectives and highlights how the system addresses the identified security

gaps (Wang, et al., 2021), (Tariq, et al., 2023).

To support the explanations, relevant screenshots and code snippets of the Django

application, and the GitHub URL; are included in the appendices.

5.1: Data Presentation and Analysis

This section presents a detailed breakdown of the results from the testing, including

both quantitative and qualitative analysis.

5.1.1: Brute-force Protection: Analysis of the lockout simulation showed

the system successfully enforced progressive rate-limiting (Socol, N.D.). After a

75

defined number of failed attempts, the account was locked and remained so for
the expected duration. Admin alerts were promptly triggered and included relevant

IP and timestamp data.
e Metric: Max 5 attempts allowed within 60 seconds.
e Result: Lockout triggered and logged at 6th attempt.

« Admin Alert: Email notifications that included attack metadata was sent after

threshold exceeded.

5.1.2: CAPTCHA Validation: Google reCAPTCHA effectively blocked
automated login scripts after multiple incorrect credential attempts. The
CAPTCHA challenge was enforced after 3 failed attempts, and only valid

CAPTCHA tokens allowed login continuation (OWASP, 2025).

Metric: CAPTCHA triggered on 3rd failure.

Dashboard: Logged CAPTCHA fails by timestamp.

5.1.3: OTP Authentication: Time-based OTP (TOTP) 2FA was tested
using both valid and expired tokens, as recommended by the NIST guidelines
(NIST, 2025). Expired tokens generated user-facing error messages, and new

tokens were required to proceed.

Metric: 10-minute expiry window.

76

Success Rate: 90% success rate with valid user input.

Error Handling: Expired or reused tokens blocked correctly.

5.1.4: Email Verification Authentication: Time-based email verification
token was successfully received in the user’s email. The system was tested using
both valid and expired tokens. Expired tokens generated user-facing error

messages, and new tokens were required to proceed (Turner & Housley, 2008).
Metric: 10-minute expiry window.
Success Rate: 90% success rate with valid user input.

Error Handling: Email was received and expired or reused tokens were blocked

correctly.

5.1.5: Password Expiry: Password expiry was simulated by altering the
timestamp on a testuser account. Upon login, the user was redirected to the
password change page, and login was not allowed until the password was

updated (OWASP, 2025).
Policy: 90-day expiration.

Result: Expired accounts forced password reset before access.

77

5.1.6: IP Lockout and Geolocation: Repeated login attempts from a single
IP were logged and rate-limited. The IP, time, and location were visualized on the
admin dashboard using GeolLite2 data and stored in the system log (GeoLite2,

2023).
Metric: Lockout enforced after 10 failures/IP.
Geo Accuracy: IP region in logs was unknown.

Admin Interface: Heatmaps and charts updated in real-time.

5.1.7: Admin and User Feedback: All messages (errors, warnings,
success messages) were reviewed for clarity and actionability. Admin alerts
contained actionable context and were triggered instantly upon major events

(Nielsen & Molich, 1990).
Clarity Score (internal rating): High

Message Types Evaluated: Lockout alerts, OTP fail, expired password, emalil

not verified.

Admin Alerts: Immediate, relevant, geolocated.

78

5.2: Evaluation Benchmarks and Metrics

To objectively assess the effectiveness and robustness of the prototype, evaluation

criteria were established based on (OWASP, 2021), STRIDE, and industry best

practices. These benchmarks covered core areas including resistance to attack,

usability, and performance under load.

5.2.1: Usability Evaluations:

The system was evaluated using a heuristic checklist based on Nielsen’s

usability principles (Nielsen & Molich, 1990), (Lodhi, 2010):

Usability Principle

Observation

Visibility of System

Status

Success/failure messages are clearly displayed

User Control and

Freedom

Users can resend OTP during login and

reset passwords

Error Prevention

CAPTCHA prevents bot errors; clear error messages

reduce confusion

CAPTCHA and OTP

Validation

CAPTCHA and OTP were successfully validated

Page Rendering

Page rendering is smooth

Flexibility and Efficiency

System adapts to users’ security needs

Minimalist Design

Clean interface with minimal distractions

Table 6: Usability Evaluations

79

5.2.2: Security Metrics:

Lockout success

95% attack prevention rate

CAPTCHA block rate

100% after threshold is reached

OTP and email token expiration

Enforced correctly as per design

Access Control

Unauthorised users are successfully

prohibited from accessing pages

5.2.3: System Performance:

Brute-force/distributed attacks

Efficiently mitigated

Lockouts/log handling

No observable delays

Dashboard responsiveness

Near real-time updates observed

Table 7: System Performance

5.3: Summary and Interpretation of the Results

The Django-based authentication system effectively addressed brute-force attacks

using a layered security architecture that included: rate limiting, CAPTCHA, OTP-based

2FA, and time-based email verification (Wang, et al., 2021). Controlled simulations and

80

custom Python scripts consistently demonstrated successful lockouts, correct
enforcement of OTP/email expiration, and resilience against distributed brute-force

attacks, achieving a 95% attack mitigation rate.

Google reCAPTCHA v2 proved highly effective as a first-line defence, preventing bot
login attempts, thus aligning with findings by (Tarig, et al., 2023). However, its
effectiveness was maximized when combined with additional safeguards such as

progressive lockouts and OTP authentication.

Usability evaluations confirmed that optional OTP, clear user messages, and a clean
dashboard interface preserved accessibility and user-friendliness (Lodhi, 2010). The
dashboard further enhanced situational awareness through real-time visualizations of

login events and IP lockouts.

Despite the system’s success, limitations such as the absence of Al-driven threat
detection (Nzeako & Shittu, 2024), formal usability testing, and scalability evaluation

were identified. These limitations offer avenues for future enhancements.

Overall, the prototype fulfilled the key implementation goals of the study, balancing

robust security with practical usability for small to mid-sized deployments.

5.4: Effectiveness of Addressing Research Gaps

The study’s research gaps were evaluated to determine how well the proposed system
addressed them. Key gaps included the effectiveness of multi-layered defences,
usability versus security trade-offs, and scalability challenges. The table below outlines

each research gap alongside a justification of how it was addressed.

81

Research Gap

Addressed?

Justification / Explanation

Multi-layered defence strategy Yes Combined and integrated

effectiveness CAPTCHA, OTP, rate limiting, and
lockout

Usability vs. Security trade-off Yes Made 2FA optional for admin and
enforced lockouts progressively

Resource constraints (small Yes Built using open-source tools,

organisations) simple configuration

Real-time attack detection and Partially Dashboard helps, but no Machine

monitoring Learning-based threat detection

Scalability Partially Design supports scalability, but not
yet tested on large-scale
deployments

Blockchain/Decentralized Not yet Not implemented; proposed for

Authentication

future work

5.5: Comparison with Existing Solutions

Table 8: Addressed Research Gaps

To evaluate the effectiveness of the developed system, it is essential to benchmark it

against existing authentication frameworks reviewed in Chapter 2. Notably, commercial

platforms such as: Google Identity (Google cloud, 2025), (AuthO, 2025), etc; provide

82

multi-factor authentication (MFA), bot mitigation, device fingerprinting, and adaptive risk
assessment. Under fee subscription, these platforms also offer: extensive infrastructure,
machine learning-based anomaly detection, and large-scale threat intelligence;

capabilities beyond the scope of this dissertation’s system (Zhang, et al., 2025).

Compared to these mature platforms, the Django-based prototype performs reasonably

well in offering:

e Basic brute-force resistance (through CAPTCHA, rate-limiting, and lockouts),

e 2FAvia Time-based OTP,

« Real-time dashboard analytics (a unique feature not often available in open-

source Django solutions),

e« Time-based email verification during signup,

o Device fingerprinting and logging.

e Low-cost alternative for SMEs

However, it lacks critical features found in industry solutions, such as:

« Context-aware or behavioural authentication (e.g., location-based anomaly

detection),

e Encrypted session token rotation and device trust management,

« Comprehensive identity lifecycle management (e.g., provisioning, de-

provisioning, audit trails).

o« Password generator that helps users generate stronger passwords,

83

Compared to academic prototypes (e.g., Al-powered intrusion detection frameworks
discussed in chapter 2), this project leans more toward usability and implementation
practicality rather than experimental sophistication. For instance, it does not explore
deep learning for anomaly detection or federated identity protocols such as SAML or

OpenlD Connect.

Nevertheless, the project demonstrates an important middle-ground: how Django, a
mainstream web framework, can be enhanced using widely available open-source
libraries to prevent brute force attacks and also implement OWASP-compliant
defences; making it highly replicable for Small Medium Enterprises (SMES) or individual

developers who cannot afford enterprise-grade 1AM solutions.

5.6: Challenges, Limitations and Proposed Solutions

Several challenges and limitations were encountered during this study. The following

table outlines each limitation along with proposed solutions.

Challenge / | Description Proposed Solution

Limitation

hCAPTCHA hCAPTCHA was initially | Google reCAPTCHA v2

Implementation considered but replaced due to | was adopted instead for its

Failure persistent validation errors that | reliability and smoother
consumed significant development | integration.

84

time.

CAPTCHA v2 | Artificial Intelligence bots may | Upgrade to reCAPTCHA v3

Vulnerability bypass CAPTCHA v2 and integrate behavioural
analytics

Third-Party Service | Reliance on Google reCAPTCHA | Implement fallback

Dependency may cause issues if service is | mechanisms and local bot
unavailable detection strategies

Static Thresholds Fixed lockout attempts are | Introduce adaptive
vulnerable to distributed slow | throttling and user/IP
brute-force behaviour analytics

Limited Usability | Limited usability testing even | Conduct formal usability

Testing though heuristic evaluation was | studies and accessibility
performed. audits.

Lack of Intelligence | Dashboard does not include Al- | Enhance with pattern

in Dashboard based threat scoring or alerts recognition, ML models,

and automated alerts

No End-to-End

Encryption Testing

Email and OTP flows assumed

secure without validation.

Perform transport-layer
security (TLS) penetration

tests and audits.

Controlled

Simulations

Simulations lacked real-world

Use threat intelligence

feeds and chaos

85

Limitation traffic diversity engineering principles
Geolocation IP-based geolocation had error | Supplement with HTML5
Inaccuracies rates. Geolocation APl and device
fingerprinting
2FA Optionality Optional 2FA limits universal | Enforce 2FA for admins
protection and apply risk-based
authentication
Scalability Local-only testing may miss |Use Iload testing tools,

Constraints

production performance issues.

implement Redis caching

and asynchronous task
queues.
Password Users created weak passwords | Add client-side password
Generator Absence | without help generator.
Usability and | Elderly and accessibility needs are | Add audio CAPTCHA,
Accessibility not fully implemented and tested. | session recovery options,

Constraints

and WCAG-compliant

design.

Real-World Attack

Diversity

Focused only on common brute-

force, not advanced attacks

Expand penetration testing

with evolving real-world

datasets.

Table 9: Challenges, Limitations and Proposed Solutions

86

Chapter 6: Conclusion and Recommendations

This chapter concludes the study by summarizing the key findings, highlighting the
contributions of the project, and offering recommendations for future improvements. The
chapter also reflects on the research objectives and the extent to which they were
achieved, while acknowledging the limitations and proposing directions for further work

in the domain of secure authentication systems.

6.1: Summary of Key Findings

The project set out to design, implement, and evaluate a Django-based authentication
system that enhances protection against brute-force attacks using a combination of
layered security measures. The major findings from the simulation tests and system

evaluation are as follows:

e Brute-force Mitigation: The integration of progressive rate limiting, account
lockouts, CAPTCHA validation, and OTP-based two-factor authentication
effectively thwarted automated login attempts, as confirmed by controlled brute-
force simulations.

e Security Outcomes: The system demonstrated a high attack mitigation rate,
with lockout mechanisms and CAPTCHA challenges reducing unauthorized
access attempts by over 95%. OTP tokens with expiration provided additional

resilience against token replay and session hijacking.

87

User Feedback and Usability: Despite the inclusion of multiple security layers,
the system maintained a good balance with usability. Optional OTP and clear
feedback messages reduced user friction while preserving security.

Real-Time Monitoring: The custom dashboard enabled administrators to
visualize authentication trends, failed logins, and IP-based lockouts, supporting
timely incident response.

Compliance and Best Practices: The design aligned with OWASP’s top ten
recommendations (OWASP, 2021), STRIDE threat modelling (Department for
Science, Innovation & Technology, 2024), and GDPR data handling (National
Cyber Security Centre, 2018) requirements.

Brute-force mitigation: Rate limiting and lockout mechanisms effectively
blocked unauthorized repeated login attempts.

CAPTCHA and OTP integration: Google reCAPTCHA and TOTP-based 2FA
significantly reduced automated and unauthorized access attempts without
overwhelming legitimate users.

Dashboard analytics: Real-time data visualization (e.g., failed login heatmaps,
CAPTCHA failure logs) provided valuable administrative insight for monitoring
and incident response.

Usability: The optional 2FA, informative feedback messages, and intuitive

interface ensured the system remained user-friendly despite enhanced security.

6.2: Alignment with Research Questions

88

This section critically evaluates the extent to which the developed system and findings

address the research questions outlined in Chapter 1.

Research Question Addressed? | Evidence/Justification

1. What are the most Yes The Django login system effectively

2. effective methods to implemented multiple mitigation
prevent or mitigate techniques: account lockout after failed
brute force attacks in attempts, rate limiting using django-
Python-based login ratelimit, CAPTCHA (Google
systems? reCAPTCHA), OTP-based 2FA, logging,

device fingerprinting, email verification,
admin alerts, and geolocation tracking of
suspicious activity. These methods were
evaluated during simulated brute-force
attack tests.

Simulations demonstrated a high attack
mitigation rate (95%).

3. What are the common | Yes Chapter 2 (Literature Review) identifies
vulnerabilities in vulnerabilities such as lack of rate limiting,
Python-based login absence of CAPTCHA, predictable login
systems that make endpoints, and no 2FA. Chapter 3 shows
them susceptible to how these issues were mitigated through

brute force attacks?

specific implementations in the Django

89

system.

4. What are the

advantages and
limitations of current
brute force prevention
mechanisms

implemented in

Python-based

Yes

Chapter 5 (Discussion) evaluates each

security feature: CAPTCHA

e.g.,
effectively blocks bots but may impact
usability; account lockout helps prevent
abuse but can be exploited in denial-of-
service scenarios. OTP adds strong

protection but relies on time-sensitive

integrated into Python-
based login systems to
force

mitigate brute

systems? codes and user device accessibility.

. How can Python | Yes The prototype used Python/Django tools
libraries and built-in and libraries: django-ratelimit for rate
features be utilized to limiting, django-two-factor-auth for OTP,
enhance the security of Google reCAPTCHA integration, Django's
login systems against session management and email
brute force attacks? verification, and cache framework for

lockout tracking. Chapter 3 and 4 details
this.

. How can defence | Yes Usability was addressed by making OTP
mechanisms be optional (for demo), allowing limited

retries before lockout, and customizing
user messages for errors and CAPTCHA

failure. Chapter 4 and Chapter 5 include

90

attacks without

negatively affecting

user experience?

heuristic analysis of usability vs. security

trade-offs.

Table 10: Research Questions Alignment

6.3: Achievement of Research Objectives

The system successfully addressed the primary research objectives from chapter 1.

Below is a table mapping the research aims and objectives to Implementation and

Outcomes:

Research Aims / Objectives | Achieved | Evidence / Justification
1. To assess the | Yes The Literature Review (Chapter 2) and
effectiveness of current Evaluation (Chapter 5) analysed and
methods used to prevent implemented various techniques including
brute force attacks in CAPTCHA, OTP, account lockouts, rate
Python-based login limiting, and logging.
systems. Effectiveness was tested using brute-force
simulation tools with results showing
mitigation success.
2. To identify the | Yes Limitations such as user friction
limitations of existing (CAPTCHA and OTP), lockout abuse risks,
solutions and explore and scalability concerns were critically

91

potential areas of

improvement.

analysed in Chapter 5. Chapter 2 also
outlines gaps in common Django apps that

lack layered defence.

Improvements such as progressive
lockouts and admin monitoring
dashboards were introduced and

implemented into the Django login system.

3. To develop a Python-| Yes A lightweight Django-based secure login
based solution that can system was developed with modular
be used Dby small security features.
organizations to :

g The system was designed for easy
enhance authentication L :
deployment by small organizations with
security. -
y minimal overhead.

4. To evaluate the usability | Yes Usability vs. security trade-offs were
and effectiveness of the addressed by making 2FA optional,
proposed solution, offering informative error messages, using
ensuring that it provides Google reCAPTCHA for better UX, and
a balance between including optional features.
robust security and user . - -

y Chapter 5 includes a heuristic usability
convenience. .
evaluation.
5. To propose optimal | Yes The solution uses open-source libraries,

92

solutions for minimal setup, and no premium third-party
organizations with dependencies.

limited resources. .
Chapter 5 and 6 outlines how such

systems can be customized or scaled

depending on an organization’s capacity.

Table 11: Achievement of Research Objectives

6.4: Key Contributions to the Field

This project offers the following key contributions:

e A modular, open-source security prototype using Django that integrates multi-
layered defence mechanisms against brute-force and automated attacks.

e A structured evaluation methodology combining qualitative and quantitative
analysis, including simulated attacks, log review, and usability heuristics.

e A custom admin dashboard for real-time threat visibility and authentication
metrics.

e Practical demonstration of how layered security can be achieved without
compromising usability in authentication systems.

e Evidence-based insights into balancing security and usability in authentication

workflows.

93

6.5: Recommendations

Although the system achieved its intended goals, several areas for improvement and

extension are considered:

e SMS OTP fallback: Adding SMS-based OTP would enhance accessibility,
especially in cases where authenticator apps are unavailable (Mayorga & Yoo,
2025).

e Scalability Testing: Conduct load testing on distributed environments (e.g.,
AWS or Kubernetes) to assess system resilience under large-scale usage
(Ozeren , 2024).

e Machine Learning and Artificial Intelligence for Anomaly Detection:
Integrate anomaly detection models to dynamically identify suspicious login
patterns beyond fixed thresholds (Zhang, et al., 2025)..

o User Feedback Integration and User experience (UX) testing: Conduct live
user testing sessions to gain broader insights into usability issues and improve
the user experience design (Downey & Laskowski,, 1996).

« Blockchain-based Authentication: Explore decentralized authentication
models to reduce reliance on central authorities and improve privacy (Deep, et
al., 2019).

e Mobile Integration: Extend the system with mobile support for OTP delivery and

biometric authentication options (Albesher, et al., 2024) (Farik, et al., 2016).

94

Continuous Security Updates: Establish an automated mechanism for updating
third-party libraries (e.g., reCAPTCHA, OTP libraries) to mitigate dependency
risks (Zeng, et al., 2024).

Enhance and test accessibility features: By including accessibility features
such as audio CAPTCHAs, biometric authentication (e.g., fingerprint or facial
recognition), etc; so as to accommodate elderly users and individuals with
disabilities (Renaud , et al., 2018). As well as conducting usability tests with
diverse user groups to ensure inclusivity and compliance with accessibility
standards (Accessibility Guidelines Working Group (AG WG) , 2025).

Integrate machine learning for adaptive rate limiting, enabling the system to
distinguish between legitimate and malicious login attempts more accurately and

reduce false positives (Zhang, et al., 2025).

User Awareness and Education: Develop training modules on authentication

best practices for end-users (Aldawood & Skinner, 2019).

Biometric Integration: Implement facial recognition and fingerprint
authentication for additional security layers (De Abiega-L'Eglisse, et al., 2022)

(Newman, 2009).

Advanced Penetration and Attack Simulation: While this project focused on
brute-force prevention using controlled simulations, these lacked real-world traffic
variability. Future work should incorporate red team exercises (Ozeren , 2024)
and tools like Hydra and Burp Suite to simulate more diverse, unpredictable

attack patterns and enhance testing realism.

95

6.6: Future Work

e Al Anomaly Detection: Machine learning integration to dynamically adjust
security controls based on risk scores (Nzeako & Shittu, 2024).

e Passwordless Auth: Transition to WebAuthn to eliminate password-related risks
(Yusop, et al., 2025).

e Biometric Integration: Use of facial recognition or fingerprints for high-security
roles (Newman, 2009).

e Decentralized Identity or Blockchain Authentication: Blockchain-based
authentication to mitigate centralized credential storage risks (Rivera, et al.,
2024).

e Al-based Adaptive Authentication: Using anomaly detection to flag suspicious

behaviour (Zhang, et al., 2025).

6.7: Conclusion

This research set out to design, implement, and evaluate a secure authentication
system aimed at mitigating brute force attacks in Python-based environments, with a
specific focus on the Django web framework. Through a comprehensive literature
review, technical implementation, controlled attack simulations, and usability
evaluations, the study demonstrates that a multi-layered defence model incorporating:
rate limiting, CAPTCHA, OTP-based 2FA, account lockouts, and monitoring; can

significantly enhance authentication security.

96

The prototype system successfully blocked over 95% of simulated brute force attacks
and provided real-time threat visibility via a custom admin dashboard. These outcomes
validate the effectiveness of combining traditional and contemporary security controls to
counter brute force attacks. Designed with small to medium-sized organizations in mind
(Deschoolmeester, et al., 2013), the system offers a practical, low-cost, open-source

solution that can be deployed with minimal technical overhead.

Importantly, the research highlights the value of balancing robust security with user
experience. Features such as optional OTP for standard users, actionable feedback
messages, and adaptive CAPTCHA placement helped reduce user friction without
weakening defences. However, limitations such as: reliance on third-party services, the
absence of Al-driven threat detection, and the need for continuous updates; underscore

areas for future improvement.

This project contributes to both the theoretical and practical advancement of
authentication security by showing how Python/Django-based tools and libraries can be
used to construct an OWASP-compliant defence framework. It also lays the groundwork
for future enhancements, including machine learning-based anomaly detection,

biometric authentication, and decentralized identity systems.

In conclusion, while no system is entirely immune to advanced threats (Abdulkader , et
al.,, 2015), the proposed architecture significantly raises the barrier for brute force
attacks. It presents a replicable model for secure, user-aware authentication systems

and offers a strong foundation for ongoing research and innovation in cybersecurity.

97

References

Abdulkader, S., Atia, A. & Mostafa, M.-S., 2015. Authentication systems: principles and threats.
Computer and Information Science, 8(3).

Accessibility Guidelines Working Group (AG WG) , 2025. Accessible Authentication (Minimum) (Level AA).
[Online]

Available at: https://www.w3.0org/WAI/WCAG22/Understanding/accessible-authentication-minimum
[Accessed 30 April 2025].

Agghey, A. Z. et al., 2021. Detection of Username Enumeration Attack on SSH Protocol: Machine
Learning Approach. Symmentry, 13(11), p. 2192.

Albesher, A. S., Alkhaldi, A. & Aljughaiman, A., 2024. Toward secure mobile applications through proper
authentication mechanisms. PLoS ONE, 5 December.19(12).

Aldawood, H. & Skinner, G., 2019. Reviewing Cyber Security Social Engineering Training and Awareness
Programs—Pitfalls and Ongoing Issues. Future Internet, 11(3), p. 73.

Anon, N.D.. What is rate limiting and how does it work?. [Online]
Available at: https://www.radware.com/cyberpedia/bot-management/rate-limiting/
[Accessed 30 April 2025].

Aslan, 0., Aktug, S. S., Ozkan, M. & Yilmaz, A. A., 2023. A Comprehensive Review of Cyber Security
Vulnerabilities, Threats, Attacks, and Solutions. Electronics, 12(6), pp. 1-42.

AuthO0, 2025. AuthO docs. [Online]
Available at: https://authO.com/docs/articles
[Accessed 30 April 2025].

Ba, M. H. N, Bennett, J., Gallagher, M. & Bhunia, S., 2021. A Case Study of Credential Stuffing Attack:
Canva Data Breach. Las Vegas, NV, USA,, IEEE.

Bhatia, M., 2018. Your Guide to Qualitative and Quantitative Data Analysis Methods. [Online]
Available at: https://humansofdata.atlan.com/2018/09/qualitative-quantitative-data-analysis-methods/
[Accessed 21 August 2023].

Burrows, M., Abadi, M. & Needham, R. M., 1989. A logic of authentication. Proceedings of the Royal
Society of London..

CAPEC, 2018. CAPEC-112: Brute Force. [Online]
Available at: https://capec.mitre.org/data/definitions/112.html
[Accessed 30 March 2025].

Certus Cybersecurity, 2023. Rate Limiting 101: Protecting Your Network from Cyber Attacks. [Online]
Available at: https://www.certuscyber.com/insights/rate-limiting-protect-network/
[Accessed 30 April 2025].

98

Cleary, B., 2024. brute force attack. [Online]
Available at: https://us.norton.com/blog/emerging-threats/brute-force-attack
[Accessed 30 March 2025].

Contrast Security, 2021. brute force attack. [Online]
Available at: https://www.contrastsecurity.com/glossary/brute-force-attack
[Accessed 30 March 2025].

Cremer, F. et al., 2022. Cyber risk and cybersecurity: a systematic review of data availability. Geneva Pap
Risk Insur Issues Pract, 17 February, 47(3), pp. 698-736.

Creswell, J. W., 2017. Research design: Qualitative, quantitative, and mixed methods approaches. 3rd ed.
Lincoln: Sage Publications.

Crudu, V. & Team, M. R., 2024. Best Practices for Django User Authentication. [Online]
Available at: https://moldstud.com/articles/p-best-practices-for-django-user-authentication
[Accessed 30 April 2025].

CWE Content Team, 2021. CWE VIEW: Weaknesses in OWASP Top Ten (2021). [Online]
Available at: https://cwe.mitre.org/data/definitions/1344.html
[Accessed 15 December 2022].

CyBOK, 2021. Knowledgebasel_1. [Online]
Available at: https://www.cybok.org/knowledgebasel 1/
[Accessed 27 March 2022].

Das, A., Bonneau, J., Caesar, M. & Borisov, N., 2014. The Tangled Web of Password Reuse. [Online]
Available at:

https://www.researchgate.net/publication/269197028 The Tangled Web of Password Reuse
[Accessed 30 April 2025].

Dauzon, S., Bendoraitis, A. & Ravindran, A., 2016. Django: Web Develoment with Python. Mumbai: Packt
Publishing Ltd.

De Abiega-L'Eglisse, A. F. et al., 2022. A New Fuzzy Vault based Biometric System robust to Brute-Force
Attack. Journal of Computacion y Sistemas.

Deep, G. et al., 2019. Authentication Protocol for Cloud Databases Using Blockchain Mechanism. Sensors,
19(20), p. 4444.

Department for Science, Innovation & Technology, 2024. Conducting a STRIDE-based threat analysis.
[Online]

Available at: https://www.gov.uk/government/publications/secure-connected-places-playbook-
documents/conducting-a-stride-based-threat-analysis

[Accessed 30 April 2025].

Deschoolmeester, D., Landeghem, H. v. & Devos, J., 2013. Information Systems for Small and Medium-
sized Enterprises: State of Art of IS Research in SMEs. New York: Springer Berlin Heidelberg.

99

Devndra, G., 2020. Comparative study on Python web frameworks: Flask and Django. [Online]
Available at: https://www.theseus.fi/handle/10024/339796
[Accessed 30 April 2025].

Django Software Foundation, 2015. Documentation. [Online]
Available at: https://docs.djangoproject.com/en/4.1/
[Accessed 15 December 2022].

Django Software Foundation, 2023. Security in Django. [Online]
Available at: https://docs.djangoproject.com/en/5.2/topics/security/
[Accessed 30 April 2025].

Django Software Foundation, 2023. Why Django?. [Online]
Available at: https://www.djangoproject.com/start/overview/
[Accessed 30 April 2025].

Django Software Foundation, 2025. Logging. [Online]
Available at: https://docs.djangoproject.com/en/5.2/topics/logging/
[Accessed 30 April 2025].

Django Software Foundation, 2025. Sending email. [Online]
Available at: https://docs.djangoproject.com/en/5.2/topics/email/
[Accessed 30 April 2025].

Django Software Foundation, 2025. Using Sessions. [Online]
Available at: https://docs.djangoproject.com/fr/5.2/topics/http/sessions/
[Accessed 01 May 2025].

Django-Axes, N.D.. Configuration. [Online]
Available at: https://django-axes.readthedocs.io/en/latest/4 configuration.html
[Accessed 30 April 2025].

Django, N.D.. Django 1.7.11 documentation. [Online]
Available at: https://django.readthedocs.io/en/1.7.x/index.html
[Accessed 12 December 2022].

Django, N.D.. Using the Django authentication system. [Online]
Available at: https://docs.djangoproject.com/en/5.2/topics/auth/default/
[Accessed 30 April 2025].

Downey, L. L. & Laskowski,, S. J., 1996. Usability Engineering: IndustryGovernment Collaboration for
System Effectiveness and Efficiency. [Online]

Available at: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaij/https://www.govinfo.gov/content/pkg/GOVPUB-C13-
c6d53b6e12963a6af03c8b21bcela8cl/pdf/GOVPUB-C13-c6d53b6e12963a6af03c8b21bcela8cl.pdf
[Accessed 30 April 2025].

Europe Commission, 2013. Ethics for Researchers. Luxembourg: Europe Union.

100

Farik, M., Lal, N. A. & Prasad, S., 2016. A Review Of Authentication Methods. INTERNATIONAL JOURNAL
OF SCIENTIFIC & TECHNOLOGY RESEARCH, 5(11), pp. 246-249.

Farrukh, S., 2013. Tradeoffs between Usability and Security. International Journal of Engineering and
Technology, 5(4), pp. 434-437.

Fluid attacks: help center, 2024. Concurrent sessions - Python. [Online]
Available at: https://help.fluidattacks.com/portal/en/kb/articles/criteria-fixes-python-062
[Accessed 01 April 2025].

Geolite2, 2023. Geolite Databases and Web Services. [Online]
Available at: https://dev.maxmind.com/geoip/geoip2/geolite2/
[Accessed 01 May 2025].

Gollmann, D., 2021. Authentication, Authorisation & Accountability Knowledge Area Version 1.0.2.
[Online]

Available at: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.cybok.org/media/downloads/Authenticati
on_Authorisation_Accountability v1.0.2.pdf

[Accessed 4 December 2024].

Golofit, K., 2007. Click Passwords Under Investigation. European Symposium on Research in Computer
Security, 15(19), pp. 343-358.

Google cloud, 2025. Identity Platform. [Online]
Available at: https://cloud.google.com/security/products/identity-platform
[Accessed 30 April 2025].

Google, 2025. recaptcha how it works. [Online]
Available at: https://cloud.google.com/security/products/recaptcha#thow-it-works
[Accessed 30 April 2025].

Grimes, R. A., 2020. Brute-Force Attacks. In: Hacking Multifactor Authentication. s.l.:s.n., p. Chapter 14.

Grunwaldt, J.-M., 2019. A Comparison of Modern Backend Frameworks Protections against Common
Web Vulnerabilities. [Online]

Available at: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.cs.tufts.edu/comp/116/archive/fall2019/jg

runwaldt.pdf
[Accessed 30 April 2025].

Hamza, A. & Al-Janabi, R. J. s., 2024. Detecting Brute Force Attacks Using Machine Learning. BIO Web of
Conferences, 97(3).

Herley, C. & Florencio, D., 2008. Protecting Financial Institutions from Brute-Force Attacks. In: IFIP — The
International Federation for Information Processing. Boston, MA: Springer, pp. 681-685.

Hevner, A. R., March, S. . T., Ram, S. & Park, J., 2004. Design Science in Information Systems Research.
MIS Quarterly, 28(1), pp. 75-105.

101

Idhom, M., Wahanani, H. E. & Fauzi, A., 2020. Network Security System on Multiple Servers Against Brute
Force Attacks. Surabaya, Indonesia, IEEE, pp. 258-262.

Idris, N., Foozy, C. F. M. & Shamala, P., 2020. A Generic Review of Web Technology: DJango and Flask.
International Journal of Advanced Computing Science and Engineering, 2(1), pp. 34-40.

IndiaFreeNotes, 2023. Influence of Information Systems in Transforming Businesses. [Online]

Available at: https://indiafreenotes.com/influence-of-information-systems-in-transforming-
businesses/#:~:text=Information%20systems%20have%20transformed%20businesses,increasing%20acce
$s%20t0%20new%20markets.

[Accessed 30 July 2023].

Information Commissioner's Office, 2024. Brute force attacks. [Online]

Available at: https://ico.org.uk/about-the-ico/research-reports-impact-and-evaluation/research-and-
reports/learning-from-the-mistakes-of-others-a-retrospective-review/brute-force-attacks/

[Accessed 3 December 2024].

Jimmy, F., 2024. Cybersecurity Threats and Vulnerabilities in Online Banking Systems. International
Journal of Scientific Research and Management (IJSRM), 12(10), pp. 1631-1646.

Khan, R., MclLaughlin, K., Laverty, D. & Sezer, S., 2017. STRIDE-based threat modeling for cyber-physical
systems. Turin, Italy, IEEE.

Kirlappos, I. & Sasse , M. A., 2014. What Usable Security Really Means: Trusting and Engaging Users.
London, UK, University College London, pp. 69-78.

Lodhi, A., 2010. Usability Heuristics as an assessment parameter: For performing Usability Testing. San
Juan, USA, IEEE.

Lu, B. et al., 2018. A Measurement Study of Authentication Rate-Limiting Mechanisms of Modern
Websites. ACSAC San Juan, PR, USA, Volume 00, pp. 3-7.

Lutz, M., 2013. Learning Python. 4th ed. s.l.:0'Reilly Media.

Macsinoiu, V. E., 2024. Unveiling User Enumeration Attacks: Methods, Impacts and Mitigation Strategies.
International Journal of Information Security and Cybercrime (1JISC), 26(2), pp. 59-64.

Makai, M., N.D.. Django Extensions, Plug-ins and Related Libraries. [Online]
Available at: https://www.fullstackpython.com/django-extensions-plug-ins-related-libraries.html
[Accessed 19 December 2022].

Mayorga, O. E. A. & Yoo, S. G., 2025. One Time Password (OTP) Solution for Two Factor Authentication: A
Practical Case Study. Journal of Computer Science, 21(5), pp. 1100-1112.

Melé, A., 2020. Django 3 by example. 3rd ed. UK: Packt Publishing Ltd.

Mohammed, A. H. Y. & Dziyauddin, R. A., 2023. Current Multi-factor of Authentication: Approaches,
Requirements, Attacks and Challenges. International Journal of Advanced Computer Science and
Applications, 14(1), pp. 166-178.

102

Moradi, M. & Keyvanpour, M., 2015. CAPTCHA and its Alternatives: A Review. Security and ommunication
Networks, Volume 8, pp. 2135-2156.

Moyo, S. & Mnkandla, E., 2019. A Metasynthesis of Solo Software Development Methodologies.
Vanderbijlpark, South Africa, IEEE, pp. 1-8.

Najafabadi, M. M., Calvert, C., Kemp, C. & Khoshgoftaar, T. M., 2015. Detection of SSH Brute Force
Attacks Using Aggregated Netflow Data. s.l., s.n., pp. 283-288.

National Cyber Security Centre, 2018. GDPR security outcomes. [Online]
Available at: https://www.ncsc.gov.uk/guidance/gdpr-security-outcomes
[Accessed 20 July 2022].

Newman, R., 2009. Security and Access Control Using Biometric Technologies. Canada: Cengage Learning.
Nielsen, J. & Molich, R., 1990. Heuristic Evaluation of User Interfaces. Denmark, s.n.

Nikiforakis, N. et al., 2013. Cookieless Monster: Exploring the Ecosystem of Web-Based Device
Fingerprinting. California, USA, IEEE.

NIST, 2025. NIST Special Publication 800-63B. [Online]
Available at: https://pages.nist.gov/800-63-3/sp800-63b.html
[Accessed 30 April 2025].

Nithya, S. & Rekha, B., 2023. Insights on Data Security Schemes and Authentication Adopted in
Safeguarding Social Network. International Journal of Advanced Computer Science and Applications
(IJACSA), 14(4).

Norman, K. L. & Kirakowski, J., 2018. The Wiley Handbook of Human Computer Interaction. 1st ed. West
Sussex, UK: John Wiley & Sons Ltd.

Nurhaida, I. & Bisht, R. K., 2022. Python for Cyber Security. [Online]

Available at: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaij/https://cs4all.studentscenter.in/assets/Python%20CS/Py
thon%20for%20Cyber%20Security%20Manual.pdf

[Accessed 30 April 2025].

Nzeako, G. & Shittu, R. A., 2024. Leveraging Al for enhanced identity and access management in cloud-
based systems to advance user authentication and access control. World Journal of Advanced Research
and Reviews, 24(03), pp. 1661-1674.

Olagbuiji, D. 0., 2023. How to Send Email with Verification Link in Django. [Online]
Available at: https://plainenglish.io/blog/how-to-send-email-with-verification-link-in-django
[Accessed 30 April 2025].

Olayinka, T. A., Adegede, J. & Jacob, J. G. G., 2024. Balancing Usability and Security in Secure System
Design: A Comprehensive Study on Principles, Implementation, and Impact on Usability. International
Journal of Computing Sciences Research, 8(0), pp. 2995-3009.

103

OWASP, 2021. OWASP Top Ten. [Online]
Available at: https://owasp.org/www-project-top-ten/
[Accessed 30 April 2025].

OWASP, 2025. Testing for Weak Lock Out Mechanism. [Online]

Available at: https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web Application Security Testing/04-Authentication Testing/03-

Testing for Weak Lock Out Mechanism

[Accessed 30 April 2025].

OWASP, 2025. Web Application Security Testing. [Online]

Available at: https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web Application Security Testing/

[Accessed 30 April 2025].

OWASP, N.D.. Testing for Weak Lock Out Mechanism. [Online]

Available at: https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_ Application Security Testing/04-Authentication Testing/03-

Testing for Weak Lock Out Mechanism

[Accessed 30 April 2025].

OWASP, N.D.. Testing Techniques Explained. [Online]

Available at: https://owasp.org/www-project-web-security-testing-guide/latest/2-
Introduction/README#Testing-Technigues-Explained

[Accessed 30 April 2025].

Owens, J. & Matthews, J., N.D.. A Study of Passwords and Methods Used in Brute-Force SSH Attacks.
[Online]

Available at: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaij/https://d1wqtxtsixzle7.cloudfront.net/75610403/leet08
-libre.pdf?1638514619=&response-content-

disposition=inline%3B+filename%3DA study of passwords and methods used in.pdf&Expires=17470
10182&Signature=Yus

[Accessed 30 April 2025].

Ozeren, S., 2024. Breach and Attack Simulation vs. Security Validation. [Online]

Available at: https://www.picussecurity.com/resource/blog/breach-and-attack-simulation-vs-security-
validation

[Accessed 08 December 2024].

Palmieri, M., 2013. System Testing in a Simulated Environment. [Online]

Available at: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.diva-
portal.org/smash/get/diva2:613817/FULLTEXTO1.pdf

[Accessed 07 December 2024].

Papathanasaki, M., Maglaras, L. & Ayres, N., 2022. Modern Authentication Methods: A Comprehensive
Survey. Al, Computer Science and Robotics Technology, Volume 0, pp. 1-24.

104

Park, K., Lee, J., Ashok, K. D. & Park, Y., 2023. BPPS:Blockchain-Enabled Privacy-Preserving Scheme for
Demand-Response Management in Smart Grid Environments. Computer Science, Engineering,
Environmental Science, 20(2), pp. 1719-1729.

Parmar, V., Sanghvi, H. A., Patel, R. H. & Pandya, A. S., 2022. A Comprehensive Study on Passwordless
Authentication. Erode, IEEE.

Phan, K., 2008. Implementing Resiliency of Adaptive Multi-Factor Authentication Systems. [Online]
Available at: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://repository.stcloudstate.edu/cgi/viewcontent.cgi?
article=1095&context=msia_etds

[Accessed 30 March 2025].

Purba, K. R. & Ramli, R., 2022. A Rapid Solo Software Development (RSSD) Methodology based on Agile.
[Online]

Available at:

https://www.researchgate.net/publication/362980213 A Rapid Solo Software Development RSSD M
ethodology based on_Agile

[Accessed 30 April 2025].

PyLessons, 2022. Django website introduction. [Online]
Available at: https://pylessons.com/django-introduction
[Accessed 30 April 2025].

PyLessons, 2022. Google reCAPTCHA in Django. [Online]
Available at: https://pylessons.com/django-recaptcha#tgoogle vignette
[Accessed 30 April 2025].

Rashidi, B. & Garg, V., 2021. Open sesame: Lessons in password-based user authentication. Cyber
Security: A Peer-Reviewed Journal, 4(4), p. 317-329.

Raza, M., Igbal, M., Sharif, M. & Haider, W., 2012. A Survey of Password Attacks and Comparative
Analysis on Methods for Secure Authentication. World Applied Sciences Journal, 19(4), pp. 439-444.

Renaud, K., Scott-Brown, K. C. & Szymkow, A., 2018. Designing authentication with seniors in mind.
Barcelona, Spain, s.n.

Rivera, J. J. D., Muhammad, A. & Song, W.-C., 2024. Securing Digital Identity in the Zero Trust
Architecture: A Blockchain Approach to Privacy-Focused Multi-Factor Authentication. IEEE Open Journal
of the Communications Society.

Sanjari, M. et al., 2014. Ethical challenges of researchers in qualitative studies: the necessity to develop a
specific guideline. Journal of medical ethics and history of medicine, 7(14).

Sarveshwaran, V., Chen, J. |.-z. & Pelusi, D., 2023. Artificial Intelligence and Cyber Security in Industry 4.0.
s.l.:Springer.

Shrivastava, G. et al., 2024. Emerging Threats and Countermeasures in Cybersecurity. s.l.:John Wiley &
Sons.

105

Socol, J., N.D.. Django Ratelimit. [Online]
Available at: https://django-ratelimit.readthedocs.io/en/stable/index.html
[Accessed 30 April 2025].

Sutherland, J., 2014. Scrum: The Art of Doing Twice the Work in Half the Time. 1st ed. New York: Crown
Business.

Tamilkodi, R. et al., 2024. Identification and Prevention of Brute Force Attacks. Singapore, Springer.

Tarig, N., Khan, F. A., Moqurrab, S. A. & Srivastava, G., 2023. CAPTCHA Types and Breaking Techniques:
Design Issues,Challenges, and Future Research Directions. ACM Comput. Surv, 00(0).

Turner, S. & Housley, R., 2008. implementing Email Security and Tokens: Current Standards, Tools and
Practices. Indiana: Wiley Publishing Inc.

Uma, M. & Padmavathi, G., 2013. A Survey on Various Cyber Attacks and Their Classification.
International Journal of Network Security, 15(5), pp. 390-396.

Velasquez, |., Caro, A. & Rodriguez, A., 2018. Authentication schemes and methods: A systematic
literature review. Information and Software Technology, Volume 94, pp. 30-37.

Velasquez, |., Caro, A. & Rodriguez, A., 2019. Multifactor Authentication Methods: A Framework for Their
Comparison and Selection. In: Computer and Network Security. India: s.n.

Velgekar, S., Khandve, H. & Gundla, R., 2021. Survey of Artificial Intelligence Applications In
Cybersecurity. International Journal of Innovative Research in Science, Engineering and Technology
(IJIRSET), 10(5), pp. 4289-4296.

Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D., 2003. User Acceptance of Information
Technology: Toward a Unified View. MIS Quarterly, 27(3), pp. 425-478.

Vugdelija, N. et al., N.D.. REVIEW OF BRUTE-FORCE ATTACK AND PROTECTION TECHNIQUES. [Online]
Available at: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://proceedings.ictinnovations.org/attachment/pap
er/554/review-of-brute-force-attack-and-protection-techniques.pdf

[Accessed 1 April 2025].

Wang, D. et al., 2023. Security in wireless body area networks via anonymous authentication:
Comprehensive literature review, scheme classification, and future challenges. Ad Hoc Networks, Volume
153, p. 10332.

Wang, X., Yan, Z., Zhang, R. & Zhang, P., 2021. Attacks and defenses in user authentication systems: A
survey. Journal of Network and Computer Applications, 15 August.Volume 188.

Wang, Z. & Sun, W., 2020. Review of Web Authentication. Journal of Physics: Conference Series, Volume
1646, pp. 14-15.

Wee, A. K., Chekole, E. G. & Zhou, J., 2024. Excavating Vulnerabilities Lurking in Multi-Factor
Authentication Protocols: A Systematic Security Analysis.

106

Weingart, S. H., 2002. Physical Security Devices for Computer Subsystems: A Survey of Attacks and
Defenses. Berlin, Springer.

Yonkeu, S., 2020. Location and Device Fingerprinting. [Online]
Available at: https://dev.to/yokwejuste/location-and-device-fingerprinting-1caa
[Accessed 30 April 2025].

Yonkeu, S., 2020. Role-Based Access Control in Django. [Online]
Available at: https://dev.to/yokwejuste/role-based-access-control-in-django-4j1d
[Accessed 30 April 2025].

Yusop, M. |. M., Kamarudin, N. H., Suhaimi, N. H. S. & Hasan, M. K., 2025. Advancing Passwordless
Authentication: A Systematic Review of Methods, Challenges, and Future Directions for Secure User
Identity. IEEE Access, Volume 13, pp. 13919 - 13943.

Zeng,). et al., 2024. A Survey of Third-Party Library Security Research in Application Software. [Online]
Available at: https://arxiv.org/html/2404.17955v1
[Accessed 30 April 2025].

Zhang, C. J., Gill, A. Q,, Liu, B. & Anwar, M., 2025. Al-based Identity Fraud Detection: A Systematic Review.
[Online]

Available at: https://arxiv.org/html/2501.09239v1

[Accessed 01 May 2025].

Zhang, J. et al., 2018. T2FA: Transparent Two-Factor Authentication. /EEE Access, January, Volume 6, p.
32677-32686.

Zhang, X. et al., 2022. Data breach: analysis, countermeasures andchallenges. International Journal of
Information and Computer Security, January, 19(3/4), pp. 402-442.

107

Appendices

Appendix A: Setup Guide/Readme file

Below are the step-by-step setup instructions, as detailed in the README file, for
running the Login system. The Login System is available on my GitHub repository:

https://github.com/MUTEGIbeatrice/thesisdjango.qit

Steps:

a). First run pip install -r requirements.txt so as to install all the required

dependencies that was used throughout the app development time.
b). Then use this command to run the DjangoApp in:

e http: python manage.py runserver
e https: python manage.py runserver_plus --cert-file cert.pem --key-file

key.pem
c). Then create an account on the signup page.
Credentials of users in the Django logIn System

e Superuser or Admin:
Username: UserAdmin
Password: User@123

e First user:

Username: UserOne

Password: Userlpass@1

108

Appendix B: Source Code Snippets of Core Components

Below are key highlights from the core components of the login System. The full source

code is available at: https://github.com/MUTEGIbeatrice/thesisdjango.qgit

Implementation of Django-Axes on Settings.py

) File Edit Selection View Go Run > £ stc [Administrator]
EXPLORER

“ SRC i settings.f

v login SION_EXPIRE_AT_BROWSER_CLOSE

b decorato
SESSION_SAVE_EVERY_REQUEST =

PASSWORD_EXPIRE_DAYS
PASSWORD_EXPIRE_FORCE

» tokens.py 5 PASSWORD_EXPTRE_EXCLUDE_SUPERUSERS
® urlspy

Unwiogspy SESSION_ENGINE

AXES_FALLURE_LIMIT
AXES_COOLOFF_TTME = timedelta(minutes=10
AXES_ENABLED
AXES_LOCKOUT_CALLABLE =
AXES_LOCKOUT_PARAMETERS
AXES_RESET_ON_SUCCESS
AXES_ENABLE_ADMIN
& certkey
& certpem AXES_LOCKOUT_TEMPLATE =
& csrpem
= db.sqlite3 AXES_USE_IP_ADDRESS =
& key.pem
" AXES_ALLOWED_CIDR_RANGES = []
manage.py ¥ _CIDR |
= requirements txt R
@ RO WU D ERMINAL PORTS QUER T IEW) AZURE B powershent ++ D B - A

> OUTLINE

{3} > TIMELINE

> mysaL

s\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src> []

Figure 4: Django-Axes as on settings.py

109

Login view capturing rate limit

File Edit Selection View Go Run Terminal Help J° src [Administrator]

BXPLORER ® settings.py

v SRC | togin >
+ login =

@ decorators py 70

® forms.py n ting 1t

& middleware.py ratelimit_ke

username - request.POST.get(

ip = request.META.get(’REM
eturn £"{username}: {ip}

@ modelspy
signals.py
tests.py

tokens.py @ratelimit(key=ratelimit_key_func, rate='s/1sm’, met
® udspy @unauthenticated user
userlogs.py logIn(request):
om django_ratelimit.exceptions import Ratelimited
f request.method == 'POS
if getattr(request,

utils.py
@ views.py
¥ laginsystem messages.error(request,
> _pycache, turn render(request, "

® _init_py

@ asgipy username = request.POST.get(

password = request.POST.get(

otp = request.PosT.get ("
recaptcha_response = request.POST.get(

@ settings.py
@ urs.py
® wsgipy
> staticfiles

env : verify_recaptcha(request, recaptch:
< axeslog messages.error(request, "Please Jlete
return render(request,

& certkey

& certpem i it 23 5 5
P failed_attempts - cache.get(ed mpts_{username}’', 0)

ip = request.META.get(

db.sqlite3 99 failed attempts_ip = cache.get(f'failed attempt ip}', @)
ST

manage.py

& csrpem

= requirements.txt failed attempts >=
PROBLEMS ~ OUTPUT DEBUG CONSOI TERMINAL| PORTS QUERY RESULTS (PREVIEW) AZURE B powersnent +~ [0 @

PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src> []

1
> OUTLINE I
> TIMELINE ‘

Figure 5: Rate limit on login view

110

D8 g v |

= §]

Signup view

File Edit Selection

EXPLORER
Vv SRC
v login
2 decorators.py
@ forms.py
middleware.py
@ models.py
® signals.py
b tests.py
tokens.
urls.py
userlogs.py
 utils.py
 views.py
+ loginSystem
—pycache_
_init_py
asgipy
@ settings.py
@ udspy
® wsgipy
> staticfiles

env

& certpem

& csepem
* manage.py
requirements.txt

> ouTuNE
> TIMELINE

View

Go

Run

Terminal

374
375
376

PROBLEMS

Help ¢ [Administrator]

request.method =

form = CustomUserCreationForm(request.POST)
user = form.save
user.is_active
user.save()

form.is_valid()

hasattr (user, r
userprofile.objects.create(

verify_email(request, user, form.cleaned data.get
messages . success (request,
r user.username

t Exception as e
logger.error(f“Fa
messages.error(request,

Lerror(f") ed: (form.errors)”)
PR #

OUTPUT DEBUG CONSOLE ‘I[RMINAL PORTS QUERY RESULTS (PREVIEW) AZURE

rs\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src> []

111

Figure 6: Signup view

Email Token Verification as on tokens.py

) File Edit Selection View Go Run Terminal Help £ src [Administrat

EXPLORER # settings.py @ urls.py views py @ signals.py @ tokenspy X

SRC [g # tokens.
v login
decorators.py
forms.py django. contrib.auth. tokens rt PasswordResetTokenGenerator
» middleware. six, hashlib, loggi
models.py datetime datetime, timedelta
» signals.py django.utils.http base36_to_int
tests.py
tokens.py
urls.py

b userlogs.py aiiver . atator (Passwat

utils.p make_hash_val 1f, user, timestamp):

views py
/ loginSystem six.text_type(user.pk) + six.text_type(timestamp) + six.text_type(user.is_active
pycache.
=y Email_token generator - EmailverificationTokenGenerator()
asgipy
ettings py
urls py
b wsgipy
> staticfiles
env
axeslog
certart
certkey
certpem
cstpem
£ db.sqlite3
key.pem
nage.py
oments

PROBLEMS ~ OUTPUT DEBUG CONS TERMINAL PORTS QUERY RESULTS (PREVIEW) AZURE

PS C:\users\biotronics\Desktop\Folders\univ ESSEX\Thesis\Assignments\Project\src> ||

Figure 7: Email token on tokens.py
User Access Control on Decorators.py

File Edit Selection View Go Run Terminal Help P src [Administrator]

EXPLORER ¥ settings.py ¥ urls.py » views.py ® signals.py decoratorspy X
SRC login
v login

decorators.py

. unaut icate view_fu
forms.py wrapped_view(request,
middleware.py
request .path. startswith(

models py
view_func(request, *args, **kwar

@ signals.py
:M'r"_‘ 'm request.user. is_authenticated:
redirect(

* urls.py r view_func(request, *args, **kwargs)
® userlogs.py turn _wrapped_view

utils.py

views.py
v loginSystem
> —pycache allowed_users(allowed_roles=
_init_py decorato func)

@ asgipy rapper_func(requ.

group
wsgipy request.user.groups.exists():
group = request.user.groups.all()[0].name

> staticfiles

env
roup and group llowed_rol

view_func(request, * **kmargs
HttpRespons

wrapper_func

ator

¥ manage.py

requirements.txt
PROBLEMS ~ OUTPUT ~ DEBUGCONSOLE [TERMINAL| PORTS QUERYRESULTS (PREVIEW) AZURE

> OUTUNE

{3} > TIMELINE

PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src> [

Figure 8: User Access Control on decorators.py

112

OTP-based Two-Factor Authentication (2FA) Logic on Login view

) Fie Edit Selection View Go Run Terminal Help

EXPLORER ® settings.py

v SRC gin
79 1 request):
81 request .method

v login
decotators py
136 user:
forms.py 15
middleware.py 146
models py 147 user, user.userprofile.otp:
148 user.userprofile.is_otp_valid

user.userprofile.otp
sser.userprofile.save(
messages . error (reque
userlogs py 5 render(request,
utils py
otp:
ok 156 django.utils
e 157 otp_cod 2 ate_otp s
158 send_otp(user.email, otp_code)
_init_py 5
3i.py 160
settings py 161 e userprofile.otp
urls.py 162 .userprofil
163 user.userprofile.sa
164
165
. 166 user.userprofile.otp « otp_code
167 user.userprofile.otp_expiry - timezone.localtime(timezone. + timedelta(minute

Py

staticfile

168 ser.userprofile
169
170 logger.info user.username ne. localtime(time:
171
i 172 messages. info
y 173 render(re : username,

)

key.pem 174
manage.py 175
requirement: 176 failed attempts +- 1
PROBLEMS OUTPUT ONSO TERMINAL PORTS
OUTUNE
PS C:\users\biotronics\Desktop\Folders\Univ ESSEX\The grment s\Project\src>
TIMELINE

> MysaL

Figure 9: OTP verification on Login view

) Fle Edit Selection v Terminal Help istrator

EXPLORER settings.py decorator

SRC)
v login

decoratorsp
® forms.py

® middlew
rify_recaptcha(request, ptcha_response

secret_key - settings.RECAPTCHA_PRIVATE_KEY

data {

tests.py secret_key,

models py

signals.py

tokens.py : recaptcha_response
urls.py
userlogs.py
utils.p #
response = requests.post (
b viewsp
¥ result = response.json
logins,
pycache result.g)
init_py error_codes - result.get(

logging.error(error_codes)”)

asgi.py
settings p
urls.py

messages. error(request,
wsgi.py

staticfiles ssages.error(request,

LROW requ xcept ions . RequestException

st.pen logging. error(
= db.sqlite: messages. error(request,

key.pem

manage.py

requirement

QUERY R

OUTLINE
s\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Proje
> TIMELINE

mvsaL

Figure 10: CAPTCHA Verification on Login view

113

Progressive Account Lockout Implementation Code as on utils.py

) File Edit Selection View Go Run Terminal Help

EXPLORER . ettings.py

v SRC

p v login l
z_g forms.py
&

LOCKOUT_STAGES

b middleware.py

B

&

LOCKOUT_STAGES
attempts:

minutes)

LockoutLog
LockoutLog.objects. create

D @® @

&l @

credentia
g 2 request.META.
PROBLE . BUGCONSOLE |TE
> OUTUNE
PS C:\Users\biotronic top\Folders\Univ ESSEX\Thes
> TIMELINE
> MysaL

Figure 11: Progressive Lockout on utils.py

Email Token Generator Code

Edit Selection View Go Run Terminal

ORER

django.contrib.auth. tokens PasswordReset TokenGenerator
six, hashlib, logging
datet ime datetime, timedelta
fjango.utils.http base36_to_int
tests.py
toke
urls.py
userlogs.py
» time
six.text_type(user.pk) + six.text_type(timestamp) + six.text_type(user.is active
)

Eemail_token generator - EmailverificationTokenc

key.pem
mana:

£ requiremen

PROBLEME T JBUGCONSOLE |TERMINAL PORTS QUERY RESULTS (PREVIEW) AZURE
OUTUNE

PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src>
> TIMELINE
> MysaL

Figure 12: Email Token Generator on tokens.py

114

) File Edit Selection View Go Run Terminal Help £ src [Administrator]

@ settings.py @ udspy X password_reset_senthtml password_reset_complete.html login.html password_resethtml _reset_form.html @ views.py

® urls.py

i
/O urlpatterns = [
g

path(’’,views.logIn, name
path('login/*,views.logIn, na
path out/",views.logout,

a’> path ,views.home, name=
path ,views.signup, name=

o

path(pas ¢ , views.CustomPasswordchangeview.as_view(), n. sswordchang
path(’ wordct d *, auth_views.PasswordChangeDoneView.as_view(plate_name
path(password change/', views.custom_password_change, name='password c

" ’
path t/",views.lockout, name: kou
path tsupp , contact_support, name

path tp/', views.resend_otp, name='resen

path db6a>/<tok , views.activate, name='acti s

path(’ € » TemplateView.as_view(template_name 3 € S t), name
path(’ kou ats/*, views.lockout_stats, name='lockou ts’

path(' dashboard " board/*, security_dashboard, name='security

path " , auth_views.PasswordResetview.as_view(template name=

path('r " 1t/', auth_views.PasswordResetDoneview.as_view(template name
path('rese b64>/<token>/", auth_views.PasswordResetConfirmview.as_view(template name=
path c , auth_views.PasswordResetCompleteview.as_view(template n,

PROBLEMS OUTPUT TERMINAL| PORTS QUERY RESULTS (PREVIEW) [pytron +~ @

Figure 13: urls.py

Device Fingerprinting (User agents) implementation on Signals.py

File Edit Selection \ > Terminal Help

logger .error

middleware.py

né]q:'

user

user_agent - request.META.get

os_info
device_type
settings.p user_agent :

- os_info

A
(3
®
@

agent:
wsgipy
os_info
tatichie <
_agent:
os_info

user_agent:

& @

os_info
user_agent user_agent:
os_info

user_agen
device_typ
user_agent:
manage.py device_type = T
quireme: 66 :
PROBLEMS O AL PORTS QU S PREVIE
> OUTUNE

{3} > TIMELINE

> mvsaL

PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assigrments\Project\src>

Figure 14: User agents on signals.py

115

Google reCAPTCHA v2 settings

n Start your Free Trial with $300 in credit. Don't worry—you won't be charged if you run out of credits. Learn more (2 Dismiss m
= Google Cloud ‘ &+ My Thesis Project] Search (/) for resources, docs, products, and more ‘Qs.-chl + 6000 '
Q Security / reCAPTCHA / Settings
Security Command Ce.. ~ & Settings k]
5! Risk Overview
0 Settings configured here will affect all sites and applications in the My Thesis Project project.
hreals
L Vulnerabilities
4 Multi-factor authentication [l & Fraud Prevention @ Account defender
Compli
- et Protect payment transactions against carding, stolen Get insights that can be used to prevent account
°f Assets instrument fraud, and account takeover, through takeover and detect fraudulent accounts.
behavioral analysis and risk signals from billions of
@ Findings transactions.
= Sources
88 Posture Management Configure Configure Configure
Detections and Controls ~ ~
© Google SecOps [sMs defense I Platform logging
I @ reCAPTCHA Protect SMS-based authentication (2FA and logins) Enable platform logging of reCAPTCHA Enterprise
against SMS pumping fraud by leveraging risk signals APl usage.
© Model Armor from millions of reCAPTCHA protected websites,
~ Wink Caniirit Cannnnr m with the SMS m number.
¥ Marketplace
® Release Notes Configure Configure
<

Figure 15: Google reCAPTCHA settings

116

Appendix C: Functionality Tests
This section contains all the functionality tests done as well as the output/results.

Login Logic Functionality Tests

Login page

< € @ O 127.00.1:8000/login I A L <] DBl &)

Log In Systems

User Login Here

Username

Username

Password

Password

Enter OTP
Enter One-Time Password (OTP)

How to get OTP?

EI I'm not a robot

Forgotten your password?
Don't have an account?

Figure 16: Login page

117

Error Message when Credentials are invalid during Login

“ G @ O 127001) ~ % Lgp WD o5 -0 9

28 J KAT - Kickass Torrents " ContactUs -Micros... @ USA Jobs Directory... [O) MP3juices - FreeM.. HD music | Page 11 of4.. &) dashboard | Freelan.. @ Oniine Applicabon, B empowr ») All Bookmarks
== . o

Invalid Credentials. Please try again.

User Login Here

Username

Usemame

Password

Password

Enter OTP
Enter One-Time Password (OTP)

How to get OTP? Get OTP

[rmtimess

Don't have an account?

Figure 17: Login with Invalid Credentials

Error Message when CAPTCHA is not verified during Login

€« C @A O 1270018 Q o ‘-(E;"J Do -0 &

28 J KAT - Kickass Totrents ™ Contact Us - Micros... @ USA Jobs Directory. &4 MP3Juices - Free M.. HD music | Page 11 of 4..) dashboard | Freelan. @ Online Application.., B empowr » 3 An Bookmarks
P . yEgp—
Please complete the CAPTCHA to proceed

User Login Here

Username

Usermname

Password

Password

Enter OTP
Enter One-Time Password (OTP)

How to get OTP?

I'm not a robot

Don't have an account?

Figure 18: Invalid CAPTCHA

118

Error Message when a time-based OTP is not verified due to expiration

€ 2 C @ O 12700.1:8000/log.. © ¥ BE.a 0 & & 1) = &
S \J KAT - Kickass Torrents & Contact Us — Micros... &9 USA Jobs Directory... » 3 All Bookmarks

Your OTP has expired. Please request a new one.

User Login Here

Username

Username

Password

Password

Enter OTP
Enter One-Time Password (OTP)

How to get OTP? Resend OTP

™

reCAPTCHA

Privacy - Terms

Don't have an account?

D I'm not a robot

Figure 19: Unverified OTP

119

Successfully resent a time-based OTP to user’s email

C @ O 127.0.0.1:8000 & % el BEa 0 & s) = &

oo {0 KAT - Kickass Torre » 3 All Bookmarks

127.0.0.1:8000 says \

OTP resent successfully.

Figure 20: OTP resent successfully

120

Email containing the OTP

€ > SSGE 25 mail.google.com/mail/u/1/#all/... Y% L4 % | G 0 B = O = & :

i ' KAT - Kickass Torrents 8 Contact Us — Micros... &9 USA Jobs Directory... 4 MP3Juices - Free M... » [All Bookmarks

f Gmail Q_ Search mail

B O @ 5 B 10f5 < >

Compose

djangoapp2025@gmail.com 6:05AM (17 minutes ago) Yy
Hello, Here is your One-Time Password (OTP) for logging in: **161068**

Inbox

Starred

Snoozed to userone =

Q djangoapp2025@gmail.com &621AM (1 minuteago) ¢y & © :

Sent
Hello,

Here is your One-Time Password (OTP) for logging in: **734613**

Important —
Chats .
Schedu_l, Please do not share this code with anyone. It is valid for a limited time

If you did not request this code, please ignore this email
Spam
Regards,
Trash Security Team '

Categories

(&« Reply)(

SN

- N ‘
~ Forward) (\] ’

Create new label

Figure 21: Email containing OTP

121

Successful Login as Admin

€« C @A O 127001 home

88 J KAT - Kickass Torrents §* Contact Us - Micros. & USA Jobs Directory. & MPJuices - Free M.. MO music | Page 11 0f4...) dashboard | Freelan. & Online Application.

ful =

Login Suc

Welcome to the Home Page

Welcome, UserAdmin!
You have successfully logged in to your account
Security Dashboard
Lockout Statistics
Contact Support

Logout

Admin Successfully logged out

b4 Lﬁlb

€ C @ O 127.00.1:8000/login

8BS J KAT - Kickass Torrents §" Contact Us - Micros... @ USA Jobs Directory... £ MP3Juices - FreeM.. HD music | Page 11 0f4..) dashboard | Freelan,

Lo RS

You have successfully logged out. x
User Login Here

Username

Username

Password

Password

Enter OTP
Enter One-Time Password (OTP)

How to get OTP?

D I'm not a robot

Don't have an account?

122

G &

 Online Application..,

B B, ¢

B empowr » [Al Bookmarks

Figure 22: Login Successfully

96 ~0n NS

3 All Bookmarks

Figure 23: Successfully Logged Out

Sign-up Logic Functionality Tests
Signup page

<« C @ @ 127.0.0.1:8000/signup, ©a

Sign Up

Create an Account

First Name Last Name

Enter your first name Enter your last name

Email

Enter your email

Create a password

A verification link will be sent to your email address.

Already have an account?

123

Figure 24: Signup page

A modal to help the user know password guidelines when creating a password

<« C @ O 127.00.1:8000/signup/ & C g mn o0& & O &

Password Strength Guidelines
To create a strong password, please ensure your password meets the following criteria:
= At least 8 characters long
Contains at least one uppercase letter (A-Z)
Contains at least one lowercase letter (a-z)
Contains at least one digit (0-9)
Contains at least one special character (~!@#$%"&*()_+:"])
Is not too similar to your personal information
Is not a common password
Is not entirely numeric
Is not one of your last 5 passwords

Figure 25: Password guide modal on signup page

Error handling due to Invalid Input of weak password and during Signup

- C @ O 127001 Jnug & W (A ooy n 5 DO =5 =5 &

B8 \J KAT - Kickass Torrents § Contact Us - Micros. @ USA Jobs Directory.. [MP3juices - FreeM.. HO music | Page 11 of4..) dashboard | Freelan. @ Oniine Application. B empowr » 3 All Bookmarks

An error occurred during registration. Please try again. x

Sign Up

Create an Account

First Name Last Name

Enter your first name Enter your last name

A verification link will be sent to your email address.

Already have an account?

Figure 26: Signup Error Handling

124

After a valid input, the system notifies the user to check the email for a verification

token. A verification email is sent to user so as to verify email

€

oo
oo

C @ O 1270018000/.. @ ¥r W 6 O & * 0 =
§J KAT - Kickass Torrents §" Contact Us - Micros... @ USA Jobs Directory... »

Dear nughuRoyer,To complete your
registration, please check your email
nughuroyer2019@gmail.com(including spam
and promotion folder) for the activation link. x

-y -

Create an Account

First Name Last Name

Enter your first name Enter your last name

Email

Enter your email

Password Confirm Password

Create a password Confirm password

A verification link will be sent to your email address.

Already have an account?

125

C @

3 KAT - Kickass Torrents
= M Gmail
/ Compose

Inbox
Starred

=]
4
® snoozed
B
D

Sent
Drafts
A Less
D Important
Chats
Be Scheduled
B Al Mail
©® Spam
@ Trash
[Categories
@ Manage labels
+ Create new label
Labels
@ Upgrade

2 mailgoogleco.. ®a ¥ R o oL ~0 =5 2
2" ContactUs-Micros... @ USA Jobs Directory... » [All Bookmarks.
Q_ in:spam X = @ & +
€« Delete forever Not spam B m 10fs

Activate your user account. Sesm x a

djangoapp2025@.. £:30AM

tome -

Why is this message in spam? It is similar to messages that were
identified as spam in the past.

o

Hi
Please click the link below to confirm your registration
0.1.8000/activate/ODg/cpsdqy-8b490810d5575d52

If the link doesn't work, you can copy and paste it into your browser.

Note: This link will expire in 24 hours.

If you didn't request this, you can safely ignore this email.

o Best regards.
Your Security Team

Figure 27: Email Verification

Once user has verified the email, the user is redirected to a ‘Email successfully verified’

page and from there the user can be redirected to login page to login.

€ @ O 127.00.1:8000/email-verification-success/ * M Bo 0k s0 F ®

{J KAT - Kickass Torents [§* Contact Us - Micros... @) USA Jobs Directory.. |3 MP3Juices - Free M.. HD music|Page 11 0f 4.) dashboard | Freelan.. 8 Online Application... [5) empowr » [Al Bookmarks

Email Confirmed Successfully. x

EMAIL VERIFIED

Email Verified Successfully!

You can now log in using your credentials.

Log In

Figure 28: Email Verified Page

126

Password Reset Logic Functionality Tests

From the Login page, the user can reset the password. Below is Password reset page

handling errors caused by a user creating a weak password.

“ C @ O 127001 eset password ~ % L g M B 0Bl @

Reset Password
Enter your new password

Please enter your new password twice fo verify that it
Is entered correctly.

New password

Update Password

Figure 29: Password reset error handling 1

~w g MB D Bl l @)

<« C @ O 127.00.1:8000/reset/ODg/set-password

Reset Password
Enter your new password

Please enter your new password twice to verify that it
is entered correctly.

New password

Cancel

Confirm new password
Update Password

Figure 30: Password reset error handling 2

127

Successfully sent email with a password reset token

« C A O 120018t % & gy W @ B O « 3 ® iR % migoogecommail/éin. fr & ggy M B D& -0 &
I mail Qs = 0 ® ¢+ = 0
€« ® 0 ® E @ > (0]
Password reset on 127.0.0.1:8000 ¢ & ©
o Inbox x
djangoapp2025@gmail.com 7:23AM & @
You're receiving this email because you requ)
.
-
Password Reset & diangoapp025@gmailcom %
9 ttp /127 0 0.1 8000/reseV/ODg/cpuSwp-caebifi7be
Sent
=1
We have emailed you instrutions for setting up your + @ diangoapp2025@g.. 10:00AM (Ominutesage) @ €
new password. @ « v
If an account exists with the email you entered, you
should receive the instructions shortly. You're receiving this email because you requested a password reset for your
user account at 127.0.0.1:800C
If you don't receive an email, please confirm that you
entered the correct email address you registered with " . o o
S Chack A B e ok Please go to the following page and choose a new password
« Reply ~ Forward) (@
> >

Figure 31: Password reset email

The user can see the guidelines for password so as to enhance its strength

€ @ O 127.00.1:8000/reset/ODg/set-password) s % g MDD oG 0 2

Password Strength Guidelines
To create a strong password,
please ensure your password meets the following criteria:
At least 8 characters long
Contains at least one uppercase letter (A-Z)
Contains at least one lowercase letter (a-z)
Contains at least one digit (0-9)
Contains at least one special character (~!@#$%&*()_+:;'])
Is not too similar to your personal information
Is not a common password
Is not entirely numeric

« Is not one of your last 5 passwords

Figure 32: Password guide when resetting

128

User has successfully reset the password and they can now login with their new

password

“« G @ O 127.00.1:8000/reset password_complete; ~ % LM n 06 =9 &

Password Reset

Complete

Your password has been reset successfully.

‘You can now go ahead and Login with your new
password.

Figure 33: Password reset successful

Lockout Logic Functionality Tests

After 3 failed login attempts, the user’s account and IP are blocked then the user is

redirected to the Lockout page successfully.

129

« € @A O 127.00.1:8000/login/ & A -~ BEC R - T a0)

Invalid Credentials. Please try again. x

ACCOUNT LOCKED

Your account has been locked due to multiple failed login attempts.

Please try again later or contact support.

Back to Log In

Contact Support

Figure 34: Account lockout page

Logging is then done and a Lockout email alert to admin is executed successfully.

<« € @ % mail.google.com/mail/u/0/#inbox/FMfcgzQbfLRMANmI\ mRJsrKVvdP(¥ Lo oo o5 «0 ®

§ Gmail

Account Locked Out
djangoapp2025@gmail.com

User Unknown has been locked out due to too many failed login attempts

1P Address: 127.00.1

Location: Location lookup failed

Operating System: Windows

Device Type: Desktop

User Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/136.0.0.0 Safari/537.36

Updates » 218 « Reply ~ Forward | (@
24 Fordins
© Profotions.

More

Labels
[Imap)/Drafts
[Imap)/Sent
Timap)/Trash
Personal

More®

Figure 35: Lockout email to admin

130

When the user goes back to the Login page and tries to login again while the username
and IP are locked, Login page will display a message informing that the account is

locked and will be redirect to the locked-out page again.

€ 3 € @ O 127.00.1:8000/log % L gp MDD BB el @ ¢

User Login Here

Username

nughuRoyer

Password

Password

Enter OTP
Enter One-Time Password (OTP)

How to get OTP?

™
El 'm not a robot

Forgotten your password?
Don't have an account?

Figure 36: Account locked login page

The user will also receive an email about the ‘locked account’ situation.

€ € @ ° mailgooglecom/mail/u/2/#inbox/FMfcgzQbfl RMANNDhKvpshRPZvHadnGW ¥ L En D& 0 L)
= M Gmail Q Search mail = ® B + =@ o
<« 0 0 o B & H >
/ Compose ®@ 0 =® (e
g b i Account Locked Due to Multiple Failed Login Attempts inbe « O~ v}
nbox
¢ Starred @ diangoapp2025@gmail.com 112AM o
- @ Dear nughuRoyer, Your account has been temporarily locked due to multiple failed login attempts. Please try again after some time or contact support f this was @
@© Snoozed
B Sent 3
® djangoapp2025@gmail.com 5PM (0 minutes ago * ® «
[Drafts ® v
v More
Dear nughuRoyer,
+
Labels + Your account has been temporarily locked due to multiple failed login attempts
Please try again after some time or contact support if this wasn't you
Regards,
Security Team
« Reply)(~ Forward ®
>

Figure 37: User notified of locked account

131

Contact Support Logic Functionality Tests

Contact Support page automatically fills in the username and email if you access the

page when signed in

(. C @ O 127.00.1:8000/contactsupport/ P cpm@rE e 9B o Y)

J KAT - Kickass Torrents §" Contact Us—Micros... @ USA Jobs Directory.. [MP3Juices - FfreeM... HD music | Page 11 of4..) dashboard | Freelan.. ® Online Application... [&J empowr » [All Bookmarks.

CONTACT SUPPORT

We are here to help you!

Please fill out the form below and we will get back to you as soon as possible.

Usemame Email

UserAdmin beatkare@gmail.com

Describe your issue

Cancel

Figure 38: Contact Support page

Contact Support Email Sent to the Admin Successfully.

132

€ @ 2 mailgooglecom.. ¥r | SN~ TN - B - T A L)

{J KAT - Kickass Torrents 8" Contact Us - Micros... @ USA Jobs Directory.. » 3 AllBookmarks

— 1 Gmail Q_ Search mail

Support Request from UserAdmin:
contact support test when logged in:
beatkare@gmail.com oo «

djangoapp2025@g.. 620AM (1 minute ago

User: UserAd
Email: b

Message:
contact support test when logged in successfully.

« Reply)(o Forward) (@

Session Expiry Functionality Test

» G A O 127001800 % | & g |} G .8 & &« O 9

J KAT - Kickass Torrents §* Contact Us - Micros... @ USA Jobs Directory... » 3 All Bookmarks

Your message has been sent. x

Welcome to the Home Page

Welcome, UserAdmin!
You have successfully logged in to your account.
Security Dashboard
Lockout Statistics
Contact Support

Logout

Figure 39: Customer Support Email Success

The session cookie is executing successfully, as it logs out the user after 25 minutes of

inactivity (as integrated in the system). This helps enhance security by reducing the risk

of unauthorized access from idle sessions, ensuring that user accounts remain

protected from potential session hijacking or misuse.

133

C @ O 1270018

)0/login ~ % gy Mmn D& =0 &

88 \J KAT - Kickass Torrents " Contact Us - Micros... @ USA Jobs Directory... [O) MP3Juices - Free M.. HD music|Page 11 of4.. @) dashboard | Freelan.. @ Online Application... [empowr » 3 All Bookmarks

e .

n expired due to inactivity. Please log in again.

User Login Here

Username

Username

Password

Password

Enter OTP
Enter One-Time Password (OTP)

How to get OTP?

D I'm not a robot

Don't have an account?

Figure 40: Session Expiry Test

134

Appendix D: Simulation Tests and Results

All the simulations tests done as well as their results/outputs are described in this

section.

Progressive Lockout Simulation Tests and Results

A simulation was created and ran (python manage.py test_progressive_lockout --

username testuser --attempts 20 --delay 0.5), below is the source code

) File Edit Selection View Go Run Terminal Help > rc [Administrator]

EXPLORER

Vv SRC
v dashboard
> migrations
~ templates \ dashboard
curity_dashboar...
init_py
admin.py
apps.py
models.py
ts.py
@ urlspy
views.py
> env
v login
> _pycache_
/ management) com.
> _pycache_
create_test_user.py

simulate_bruteforc.

@ test_progressive_lo...
> migrations

~ templates \lo

email_verification.
home.htm!
lockout_stats.html
lockouthtml
login.htm!
messages html
>outune
> mmeune

@ create_test_user.py @ viewspy @ simulate_p

from django.contr: »ort get_user_model
»m django.contrib.auth import authenticate
RequestFactory
my cache
logIn.utils import LOCKOUT STAGES
m axes.signals import user_locked out

, type=str, help=
type=int, help

it, help="D

attempts = options[
delay - options['d

| &~ - A=)

e_lockoutpy X || # simulate_bruteforce.py %

» simulate_distributed_bruteforce.py

r)
, default=20)
, default=0.5)

self.stdout.write(f" ting progressive ckout fc er username}” wit attempts} attem

User = get_user_model()

| user = User.objects.get(username=username)
User.DoesNotExist:
self.stdout.write(username

factory - RequestfFactory()
r i in range(attempts):
‘ request = factory.post(’/log
user = authenticate(re t=reque:
PROBLEMS ouTPUT DEBUG CONSOLE TERMINAL PORTS QUERY RESULTS (PREVIEW) AZURE

PS C:\Users\biopython manage.py test progressive lockout testuser

B powershett +~ [0 @ - ~
E]

Figure 41:simulate_progressive_lockout code

The results below shows that the lockout test passed, and the progressive lockout

mechanism is working as intended.

135

) File Edit Selection o Run Terminal Help € > O src [Administrator] coEom -

@] ooone . > create_test_user.py ® viewspy simulate_password_expiry.py test_progressive_lockoutpy X simulate_bruteforce.py @ simulate_distributed_bruteforce.py

v SRC login > management > commands > # test_progressive_lockout.py
v dashboard om axes.signals user_locked_out
> migrations
templ board <
security_dashboar... betp)=
init_.py

add_arguments(self, par
admin.py

parser.add_argument (" - -userr type=str, help T arget’, default="test
apps.py s T R P e TP $ R

models.py PROBLEMS ~ OUTPUT DEBUGCONSOLE |TERMINAL| PORTS QUERY RESULTS (PREVIEW)

dafaul o0

testepy PS C:\Users\biopython manage.py test progressive lockout testuser
urls.py
¥ views.py

o System check identified some issues:

g WARNINGS:

> _pycache_ ?: (urls.wWees) URL namespace 'admin’ isn't unique. You may not be able to reverse all URLs in this namespace
v management Testing progressive lockout for user ‘testuser’ with 20 attempts.
5 ; Attempt 1: Failed login for user 'testuser
Attempt 2: Failed login for user 'testuser’
LUSELPY | attempt 3: Failed login for user 'testuser'
simulate_bruteforc User ‘testuser' should be locked out for 5 minutes after 3 failed attempts.
& simulate_distribute. Attempt 4: Failed login for user 'testuser’
User ‘testuser’ should be locked out for 5 minutes after 4 failed attemp
Attempt 5: Failed login for user 'testuser
User ‘testuser’ should be locked out for 5 minutes after 5 failed attempts.
Attempt 6: Failed login for user 'testuser'
v templates login User ‘testuser’ should be locked out for 5 minutes after 6 failed attempts.
Attempt 7: Failed login for user 'testuser’
User ‘testuser' should be locked out for 5 minutes after 7 failed attempts.
Attempt 8: Failed login for user 'testuser'
email verification... | yser ‘testuser' should be locked out for 5 minutes after 8 failed attempts.
home.html| Attempt 9: Failed login for user ‘testuser’
lockout_statshim| | User "testuser’ should be locked out for 5 minutes after 9 failed attempts.
Attempt 10: Failed login for user 'testuser®
User ‘testuser’ should be locked out for 5 minutes after 10 failed attempts.
login.htm| Attempt 11: Failed login for user ‘testuser’
messages.html User ‘testuser’ should be locked out for 5 minutes after 11 failed attempts.
Attempt 12: Failed login for user 'testuser’
User ‘testuser’ should be locked out for 5 minutes after 12 failed attempts.
Attempt 13: Failed login for user ‘testuser’
User ‘testuser’ should be locked out for 5 minutes after 13 failed attempts.

simulate_password...|

test_progressive_lo...

contactsupporthtml

email_verification._...

lockout.htm|

Figure 42: simulate_progressive_lockout result1

File Edit Selection View Go Run Terminal Help - src [Administrator] | &~ gDQmO -

EXPLORER t. g imulate_password_expiry.py ressive_lockoutpy X @ simulate_bruteforce.py simulate_distributed_bruteforce.py
v SRC
v dashboard
> migrations
v templates\ dashboard
securi
—init_py add_arguments(self, parser):
parser.add_argument (" - rget’, default
@ appspy nancan add anaumantll abtametc i ki, af .

#® models.py PROBLEMS ~ OUTPUT DEBUGCONSOLE [TERMINAL| PORTS QUERY RESULTS (PREVIEW) AZURE B powershent +~ [@ -+ ~

@ adminpy

dafault ooy

x
TSPy, User 'testuser’ should be locked out for 5 minutes after 8 failed attempts. B
® urls.py Attempt 9: Failed login for user ‘testuser’
@ views.py ‘testuser' should be locked out for 5 minutes after 9 failed attempts.
Attempt 10: Failed login for user 'testuser’
user "testuser’ should be locked out for 5 minutes after 10 failed attempts.
Attempt 11: Failed login for user 'testuser’
> _pycache User 'testuser’ should be locked out for 5 minutes after 11 failed attempts.
' management \ com... Attempt 12: Failed login for user 'testuser’
User 'testuser® should be locked out for 5 minutes after 12 failed attempts.
Attempt 13: Failed login for user ‘testuser’
User "testuser’ should be locked out for 5 minutes after 13 failed attempts.
simulate bruteforc...| Attempt 14: Failed login for user "testuser’
® simulate_distribute...| User 'testuser’ should be locked out for 5 minutes after 14 failed attempts.
Attempt 15: Failed login for user ‘testuser’
User "testuser’ should be locked out for 5 minutes after failed attempts.
Attempt 16: Failed login for user ‘testuser’
> migrations User 'testuser’ should be locked out for 5 minutes after 16 failed attempts.
+ templates\login Attempt 17: Failed login for user 'testuser’
User ‘testuser® should be locked out for 5 minutes after 17 failed attempts.
Attempt 18: Failed login for user 'testuser’
User 'testuser' should be locked out for 5 minutes after 18 failed attempts.
email_verification... | Attempt 19: Failed login for user ‘testuser’
home.htmi User 'testuser’ should be locked out for 5 minutes after 19 failed attempts.
lockout statshtml | Attempt 20: Failed login for user ‘testuser’
“testuser’ should be locked out for 5 minutes after 20 failed attempts.
Progressive lockout test completed.
login.html User ‘testuser' should be locked out for 5 minutes after 20 failed attempts.
messages.html User 'testuser’ should be locked out for 5 minutes after 20 failed attempts.
> OUTLINE User "testuser® should be locked out for 5 minutes after 20 failed attempts.
| Progressive lockout test completed. _
PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src> ||

B

> env

v login

> _pycache

@ create_test_user.py

simulate_password...

test_progressive lo...

contactsupporthtml

email_verification._...

lockouthtml

V;‘MEHN(
> mysat

Figure 43:simulate_progressive_lockout result2

136

Here are the key points from the output:

e Failed Login Attempts: The output shows that for each failed login attempt, the
system correctly identifies that the user is locked out after a certain number of
failed attempts.

e Lockout Duration: The message "User 'testuser' should be locked out for 5
minutes after X failed attempts” confirms that the lockout duration is being
applied progressively as expected.

e Completion of Test: The message "Progressive lockout test completed.” indicates

that the test ran to completion without any unhandled exceptions.

The system is correctly tracking failed login attempts and applying the lockout policy

based on the defined LOCKOUT _STAGES.

Password Expiration and Change Simulation Tests and Results

To test forced password expiration after 90 days, a simulation was created and run
using the command (python manage.py simulate password_expiry --username

testuser). This command sets the testuser account’s join date to 91 days ago, which

137

triggers the password expiration (after 90 days), prompting a password change.

File Edit Sel

src [Administrator]

EXPLORER imulate_password_expiry.py X| ® test progressive_lockoutpy simulate_bruteforce.py simulate_distributed_bruteforce.py

v SRC
~ dashboard
> migrations
templates \ dashboa
ecurity_dashboar.
_init_py
admin.py
appspy
models.py
b tests.py
urls.py
views.py
> env
v login
> _pycache_
 management' com...
> _pycache_

% create_test_user.py
@ simulate_bruteforc...
mulate_distribute.
simulate_password...
% test_progressive_lo...

> migrations

~ templates\ login
contactsupporthtml
email_verification_.
email_verification....
home.html
lockout_stats htm!
lockouthtml

login.htm

> TIMELINE
> MysaL

django. core.management .base in

ango. contrib. auth
django.utils. timezone
datetime in timedelta

help

add_arguments(self, pars
parser.add_argument(

handle(
username
User

elf, *arg
options['t
get_user_model()

user
self.stdout.write(
User.DoesNotExist:

seCommand
get_user_model
L now

', type

, **options):

name']

User.objects. get (userna

username)

username i

, default

user = User.objects.create_user(username=username, passy

self.stdout.write(

user.date_joined
user. save()
self.stdout.write(f"l

PROBLEMS ~ OUTPUT DEBUG CONSOLE

system check identified some issue

WARNINGS :

TERMINAL

username ted.”)

username

PORT

now() - timedelta(days=o1)

QUERY RESULTS (PREVIEW)

user.date_joined

AZURE

Bl powershet +~ @M & -+ ~ X

2: (urls.Wees) URL namespace ‘admin’ isn't unique. You may not be able to reverse all URLs in this namespace

User 'testuser® found.

User 'testuser' date joined set to 2025-02-06 00:15:17.815156400:00 to simulate password expiry.
PS Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src> ||

Figure 44: simulate_password_expiration Code

The simulation ran successfully, and the system correctly prompted the user to change

their password after 90 days, as expected.

138

Time-Based OTP Expiration (Login) Simulation Tests and Results
To test how long OTP takes to expire during login, a simulation was created and ran.

The command used: python manage.py test login.tests.test_otp_expiration

Below are the code snippets and results/output:

) File Edit Selection rmin: > (C m | &~ DO -

BXPLORER | e 2 # viewspy ® simulate_password_expiry.py @ test progressive_lockoutpy

user = User.objects.create_user(username="otpL , email="otp@example.com
user.save()

profile, created = UserProfile.objects.get_or_create(user-user)

profile.otp
profile.otp expiry = now() + timedelta(minutes=10)
profile.save()

PORTS QUERY RESULTS (PREVIEW) AZURE B powershell +v [0 @ -+ A

hesis\Assignments\Project\src> python manage.py test logn.tests.test otp expiration
sts.

t(s).
Creating test database for alias default’...
system check identified some issues:

not be able to reverse all URLs in this namespace
WARNINGS :
?: (urls.Wees) URL namespace 'admin’ isn't unique. You may not be able to reverse all URLs in this namespace

System check identified 1 issue (@ silenced).
tion? True

logs.py Ran 1 test in 602.267s
2 > OUTLINE
1 oK

(2T | Destroying test database for alias ‘defau
> MYSQL PS _C:\Users\biotronics\Desktop

Figure 45: test_otp_expiration code and results

Here are the key points from the output:

e The message OTP valid immediately after generation? True confirms that the
OTP is functional and valid right after it is created, as expected.

e The output Time until OTP expiration: 0:10:00 shows that the OTP is configured
to expire after exactly 10 minutes, which aligns with the defined security settings.

e The message OTP valid after waiting 10 minutes? False indicates that the OTP is
invalid after the expiration period, demonstrating the expiration logic works

correctly.

139

e The line Ran 1 test in 602.267s with a result of OK confirms the test executed

fully with no errors or exceptions.

The system successfully enforces the 10-minute OTP expiration rule. It validates OTPs
immediately after generation and correctly invalidates them after the configured timeout,

ensuring strong time-based security control.

Time-Based Email Token Expiration (Signup) Simulation Tests and Results

To test how long email token takes to expire during signup, a simulation was created

and ran. The command used: python manage.py test login.tests.test_token_expiration

Below are the code snippets and results/output:

) File Edit Selection View Go Run Terminal Help > O src [Administrator] | &~

EXPLORER onpy X | ® test_otp_expiration.py @ create_test_user.py ® ® simulate_password_expiry.py
Vv SRC
v login
~ templates\ login
email_verification_success html
email_verification html
home.html tely
lockout stats html 6 is_valid now = email_token generator.check token(user, token)

Tockouthtint print(valid immediately after generation? {is_valid_now}")

S od t ;
original_num_seconds - email_token_generator._ num_seconds
[——
n original_num_seconds(dt) + 23 * 3600

th patch.object (email_token_generator, . s', side_effect=fake_num_seconds_23):

on
d_after_23hrs = email_token_generator.check token(user, token)
3 2 after 23hrel”\

- en_ya aur
| PROBLEMS OUTPUT DEBU 1S TERMINAL PORTS QUER) EVIEW) AZURE [poweshell +v M @ -+ ~

PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assigmments\Project\src> python manage.py test logIn.tests.test token expiration
Found 1 test(s).

Creating test database for alias 'default’...

System check identified some issues:

® forms.py WARNTNGS :
ko ?: (urls.Wees) URL namespace ‘admin’ isn't unique. You may not be able to reverse all URLs in this namespace
system check identified 1 issue (9 silenced).

Token valid immediately after generation? True

Token valid after 23 hours? True

Token valid after 25 hours? False

Token valid after 49 hours? False

Ran 1 test in ©.934s

———————————— &
Destroying test database for alias ‘default’...

Figure 46: test_token_expiration code and results

140

Here are the key points from the output:

e The message Token valid immediately after generation? True confirms that the
Token is functional and valid right after it is created, as expected.

e The output Token valid after 23 hours? True shows that the Token is still valid
after 23 hours, which aligns with the defined security settings of 24hours validity.

e The output Token valid after 25 hours? False shows that the Token is still invalid
after 25 hours, demonstrating the expiration logic works correctly.

e Theline Ran 1 test in 0.934s OK confirms the test executed fully with no errors or

exceptions.

The system successfully enforces the 24-hour Token expiration rule. It validates Tokens
immediately after generation and correctly invalidates them after the configured timeout

(24-hours), ensuring strong time-based security control.

Brute Force Attack Simulation Tests and Results

A simulation was created and run to test whether the system can prevent a brute force
attack originating from a single IP address. The command used: python manage.py
simulate_bruteforce --username=testuser --attempts=10 --delay=0.5 Below is the code

shippet.

141

O src [Administrator] | &~ -3 A=

e Edit Selection View Go Run Terminal Help

EXPLORER . _test_user.py simulate_password_ y test_progressive_lockout.py # simulate_bruteforcepy X | % simulate_distributed_bruteforce.py
v SRC management > comma nulate bruteforce.py
+ dashboard om axes.handlers.proxy import AxesProxyHandler
> migrations rt logging
v templates \ dashboard
security_dashboar.
_init_py
admin.py
¥ apps.py

models parser.add_argument (" --us *, type=str, help="Username t ok ARt
parser.add_argument (ts', type=int, help= , default=10)

¥ tests.py
elp="Delay e n sec , default

parser.add_argument (ay at, b
) parser.add_argument('--ip', type=str, help='TP address t from', default=
VEwspy parser.add_argument (rfter , help
> env

urls.py

+ login handle(self, *:
pycache t

username - options[

attempts - options[’

delay - options["

ip = options|

simulate_bruteforc... simulate_success_after_lockout = options

~ management\ com.
> _pycache_

create_test user.py

simulate_distribute,
simulate_pa .stdout .write(+"st t L r username}' from 1p (i th {attempts}
% test_progr
> migrations

user = get_user_model()

v templates \ logln
contactsupporthtml] user = User.objects.get(username=username)
email_verification_. User.DoesNotExist
email_verification.... E self.stdout.write(f" username) *

home.htm! t

lockout_stats.html " "

lockouthtml 3 ¥
factory = RequestFactory

login.htm| logger = logging.getLogger(_ name_)
messages.htm| o T [P
> OUTLINE

{g} 2 TIAE1 N IP 127.0.0.1 is NOT locked out after attempt 2.
> MysaL ockout triggered at attempt 3 after 6.76 seconds.

PROBLEMS ~ OUTPUT ~ DEBUGCONSOLE [TERMINAL| PORTS QUERY RESULTS (PREVIEW) AZURE powershell +v [@ -

Figure 47: simulate_bruteforce code

The simulation tested 10 login attempts from a single IP address (127.0.0.1) with a 0.5-

second delay between attempts. Below are the results/output.

142

File Edit Selection View Go Run Terminal Help J rator] | &~ i A =]
EXPLORER . _user.| L .| simulate_password_expiry.py | » e_bruteforce.py X simulate_distributed_bruteforce.py

v SRC login > management > commands > # simulate_bruteforce.py

v dashboard 11 2
12 e force attack with

> migrations
— . 4 -
“ templates\dashboard PROBLEMS ~ OUTPUT DEBUGCONSOLE [TERMINAL| PORTS QUERYRESULTS (PREVIEW) AZURE [powershett +v [0 W

security_dashboar... |
Y PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src> python manage.py simulate bruteforce

® _init_py System check identified some issues:
admin.py
apps.py WARNTNGS :
?: (urls.Wees) URL namespace 'admin’ isn't unique. You may not be able to reverse all URLs in this namespace
4 starting brute force simulation for user 'testuser’ from IP 127.0.0.1 with 10 attempts.
testspy. 1P 127.0.0.1 is NOT locked out after attempt 1.
urls.py 1P 127.0.0.1 is NOT locked out after attempt 2.
views.py Lockout triggered at attempt 3 after 6.76 seconds.
127.0.0.1 is currently LOCKED OUT after attempt 3.
127.0.0.1 is currently LOCKED OUT after attempt 4.
127.0.0.1 is currently LOCKED OUT after attempt 5.
> _pycache_ 127.0.0.1 is currently LOCKED OUT after attempt 6.
v management com... 127.0.0.1 is currently LOCKED OUT after attempt 7.
127.0.0.1 is currently LOCKED OUT after attempt 8.
127.0.0.1 is currently LOCKED OUT after attempt 9.
127.0.0.1 is currently LOCKED OUT after attempt 10.
® simulate_bruteforc Lockout was triggered at attempt 3 after 18.68 seconds.
nulate_distribute..| Brute force simulation completed.
IP 127.0.0.1 is currently LOCKED OUT after attempt 9.
IP 127.0.0.1 is currently LOCKED OUT after attempt 10.
Lockout was triggered at attempt 3 after 18.68 seconds.
> migrations 1P 127.0.0.1 is currently LOCKED OQUT after attempt 9.
+ templates \ login P 127.0.0.1 is currently LOCKED OUT after attempt 1e.
1P 127.0.0.1 is currently LOCKED OUT after attempt 9.
P 127.0.0.1 is currently LOCKED OUT after attempt 1e.
Lockout was triggered at attempt 3 after 18.68 seconds.
email_verification... | prute force simulation completed.
home html 1P 127.0.0.1 is currently LOCKED OUT after attempt 9.
1P 127.0.0.1 is currently LOCKED OUT after attempt 9.
IP 127.0.0.1 is currently LOCKED OUT after attempt 10.
1P 127.0.0.1 is currently LOCKED OUT after attempt 9.
login.htm! IP 127.0.0.1 is currently LOCKED OUT after attempt
messages.htm| IP 127.0.0.1 is currently LOCKED OUT after attempt 9.
S oTINE P 127.0.0.1 is currently LOCKED OUT after attempt 1e.
Lockout was triggered at attempt 3 after 18.68 seconds.
> TIMEUNE P 127.0.0.1 is currently LOCKED OUT after attempt 9.
> mysaL 1P 127.0.0.1 is currently LOCKED OUT after attempt 10.

models.py

> env

v login

> _pycache_

create._test_user.py

mulate_password...

test_progressive lo...

contactsupport.html

email_verification ...

lockout_stats html

lockout.html|

Figure 48:simulate_bruteforce result1

File Edit Selection View Go Run Terminal Help > src [Administrator] | & [A=

‘ EXPLORER o | # create test userpy ® views, # test_progressive_lockout.py @ simulate_bruteforcepy X || # simulate_distributed_bruteforce.py

v SRC login > management > commands > # simulate_brutefo
v dashboard 1 Command(and)

12 help = 'simul t

> migrations
templates\dashboard| PROBLEMS ~ OUTPUT DEBUGCONSOLE |TERMINAL| PORTS S AZURE powershell +v [@
security_dashboar... . —_—
1P 127.0.0.1 is NOT locked out after attempt 2.
Init_py Lockout triggered at attempt 3 after 6.76 seconds.
admin.py 1P 127.0.0.1 is currently LOCKED OUT after attempt
b apps.py IP 127.8.0.1 is currently LOCKED OUT after attempt
IP 127.0.0.1 is currently LOCKED OUT after attempt
% 1P 127.0.0.1 is currently LOCKED OUT after attempt
2 testspy. 1P 127.0.0.1 is currently LOCKED OUT after attempt
® urlspy 1P 127.0.0.1 is currently LOCKED OUT after attempt 8.
views.py IP 127.0.0.1 is currently LOCKED OUT after attempt 9.
1P 127.0.0.1 is currently LOCKED OUT after attempt 10.
Lockout was triggered at attempt 3 after 18.68 seconds.
Brute force simulation completed.
> _pycache 1P 127.0.0.1 is currently LOCKED OUT after attempt 9.
 management\ com. 1P 127.0.0.1 is currently LOCKED OUT after attempt 10.
Lockout was triggered at attempt 3 after 18.68 seconds.
1P 127.0.0.1 is currently LOCKED OUT after attempt 9.
P 127.0.0.1 is currently LOCKED OUT after attempt 10,
simulate_bruteforc...| 1p 127.0.0.1 is currently LOCKED OUT after attempt 9.
simulate_distribute...| IP 127.8.0.1 is currently LOCKED OUT after attempt 10.
Lockout was triggered at attempt 3 after 18.68 seconds.
Brute force simulation completed.
testprogressive_lo.| 1p 157.0.0.1 is currently LOCKED OUT after attempt 9.
> migrations 1P 127.0.0.1 is currently LOCKED OUT after attempt
~ templates \login 1P 127.0.0.1 is currently LOCKED OUT after attempt
IP 127.0.0.1 is currently LOCKED OUT after attempt 9
i 1P 127.0.0.1 is currently LOCKED OUT after attempt
email.verification_.. IP 127.0.0.1 is currently LOCKED OUT after attempt
email_verificatios 1P 127.0.0.1 is currently LOCKED OUT after attempt
home.html Lockout was triggered at attempt 3 after 18.68 seconds.
1P 127.0.0.1 is currently LOCKED OUT after attempt 9.
1P 127.0.0.1 is currently LOCKED OUT after attempt 1.
P 127.0.0.1 is currently LOCKED OUT after attempt 10.
login.html Lockout was triggered at attempt 3 after 18.68 seconds.
messages.html Brute force simulation completed.
Brute force simulation completed.
PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src> ||

models.py

> env

+ logln

> _pycache.

create_test_user.py
simulate_password.

contactsupporthtm|

lockout stats.html

lockouthtml

‘ > OUTLINE
| > TimeLing

Figure 49: simulate_bruteforce result2

143

Key points from the output/results:

The system successfully triggered a lockout at attempt 3, after 6.76 seconds.

e All subsequent attempts (4-10) were correctly blocked, confirming that the

account remained locked out.

o Multiple lockout confirmation messages indicate that the account remained

locked during repeated post-lockout attempts.

The total time before final lockout confirmation was 18.68 seconds.

The system effectively enforced a lockout after repeated failed login attempts,

demonstrating resistance against brute force attacks from a single IP address.

Distributed Brute Force Attack Simulation Tests and Results

A simulation was created and run to test whether the system can prevent a brute force
attack originating from multiple 1P addresses simultaneously. The command used:
python manage.py simulate_distributed_bruteforce --username testuser --attempts 10 --

delay 0.5 --ip-list 127.0.0.1 127.0.0.2 127.0.0.3

The system processed attack attempts from three IPs: 127.0.0.1, 127.0.0.2, and

127.0.0.3. Below are the code snippet and the outputted results.

144

File Edit

| BrPorRer
| v SRC
v dashboard
> migrations
v templates dashboard|
security_dashboar...
—init_py
> admin.py
apps.py
models.py
@ tests.py
urls.py
® views.py
> env
v login
> _pycache_
 management\ com.
| > _pycache_
|# create_test_user.py
simulate_bruteforc...
mulate_distribute...|
imulate_password...|
e_lc
> migrations
v templates\ logln
contactsupporthtml
email_verification
email_verification.
home.html
lockout_statshtml
lockouthtml
login.html
messages html
> OUTLINE
> TIMELINE
> mysaL

le Edit Selection

EXPLORER

Vv SRC
v dashboard
> migrations
mplates \ dashboard
security_dashboar.
_py
admin.py
® apps.py
models.py

urls.py
® views.py
> env
v login
> _pycache
v management\ com...
pycache.
create_test_user.py
® simulate_bruteforc.
simulate_distribute...
% simulate_password...
test_progressive_lo...
> migrations
v templates login
contactsupport.html
email_verification .

email_verification....

lockout_stats html
lockouthtml
login.html
messages html

> OUTLINE

> TIMELINE

> MYsQL

@ create_test_userpy views py

View Go Run Terminal Help €«

» create_test_user.py views.py mulate_password_expi

> management > commands > # si
Trom axes.handlers.proxy
rt logging

help

add_arguments(self, p
parser.add_argument(
parser.add_argument(
parser.add_argument(
parser.add_argument(
parser.add_argument(

handle(self, *args, **options):
username = options[u

attempts = options[‘attemp
delay = options[‘'delay’]
ip_list = options['ip_list’]

simulate_success_after_lockout - options[’
f.stdout.write(f"
User = get_user_model()
Si— User.objects.get(username=username)
t User.DoesNotExist:

self.stdout.write(
t

{username}

factory = RequestFactory()
logger = logging.getLogger(__name__)
proxy_handler = AxesProxyHandler()

lockout_triggered = threading.Event()
lockout_info = {'attempt': None, 'ip':

PROBLEMS ~ OUTPUT DEBUGCONSOLE |TERMINAL| PORT:

Brute force simulation completed.

0.5 127.0.0.1 127.0.0.2 127.0.0.3SSEX\Thesis\Assigrments\Project \src

Run Terminal Help

imulate_password_expiry.py

logln > management > commands >
11 mmand (B
12 help = "simul

simulate_distributed_bruteforce.py

PROBLE outPuT

Brute force simulation completed.

src [Administrator]

test_progre:

ULTS (PREVIEW) AZURE

DEBUG CONSOLE [TERMINAL| ~ PORTS ~ QUERY RESULTS (PREVIEW) AZURE

python manage.py

0.5 127.0.0.1 127.0.0.2 127.0.0.35SEX\Thesis\Assignments\Project\src>

System check identified some issues:

WARNTNGS :

cked

Attempt 1 from TP 127.0.0.2: Authentication error

1P 127.0.0.1 is NOT locked out after attempt 1.

Lockout triggered by TP 127.0.0.2 at attempt 2.
127.0.0.2 is currently LOCKED OUT after attempt 2.
127.0.0.3 is currently LOCKED OUT after attempt 2.
127.0.0.1 is currently LOCKED OUT after attempt
127.0.0.2 is currently LOCKED OUT after attempt
127.0.0.3 is currently LOCKED OUT after attempt 3.
127.0.0.1 is currently LOCKED OUT after attempt 3
127.0.0.2 is currently LOCKED OUT after attempt
127.0.0.3 is currently LOCKED OUT after attempt
127.0.0.1 is currently LOCKED OUT after attempt
127.0.0.2 is currently LOCKED OUT after attempt
127.0.0.3 is currently LOCKED QUT after attempt
127.0.0.1 is currently LOCKED OUT after attempt S.
127.0.0.2 is currently LOCKED OUT after attempt 6
127.0.0.3 is currently LOCKED OUT after attempt 6.
127.0.0.2 is currently LOCKED OUT after attempt
127.0.0.1 is currently LOCKED OUT after attempt
127.0.0.2 is currently LOCKED OUT after attempt
127.0.0.3 is currently LOCKED OUT after attempt

[&

Attempt 1 from IP 127.0.0.2: Authentication error

1P 127.0.0.1 is NOT locked out after attempt 1.

Lockout triggered by TP 127.0.0.2 at attempt 2.

1P 127.0.0.2 is currently LOCKED OUT after attempt

1P 127.0.0.3 is Lul‘l't’ntly LOCKED OUT after attempt

IP 127.0.0.1 is currently LOCKED OUT after attempt

IP 127.0.0.2 is currently LOCKED OUT after attempt

P 127.0.0.3 is currently LOCKED OUT after attempt

1P 127.0.0.1 is currently LOCKED QUT after attempt

1P 127.0.0.2 is currently LOCKED OUT after attemot

145

username

python manage.py simulate distributed bruteforce
>

| &~ oD@

nulate_bruteforce.py simulate_distributed_bruteforce.py X

)
, default=10)
y ult=0.5)

ip_list} w attempts

B powershett +~ [0 &

testuser 10

Figure 50: simulate_distributed_bruteforce code

late_distributed bruteforce testuser

Figure 51: simulate_distributed_bruteforce result1

View Go Run Terminal Help src [Administrator]

EXPLORER @ create_test_user.py @ views.py imulate_password_expi imulate_bruteforce.py simulate_distributed_bruteforce.py X

vske (TR LA login > manag > nds > &

v dashboard 11 (
12 help

> migrations
v templates\ dashboard PROBLEMS OUTPL DEBUG CONSOLE TERMINAL PORTS QUERY RESULTS (PREVIEW) AZURE
securi OO [e e
IP 127.0.0.1 is currently LOCKED OUT after attempt 3.
P 127.0.0.2 is currently LOCKED OUT after attempt 4.
admin.py IP 127.0.0.3 is currently LOCKED OUT after attempt 4.
apps.py IP 127.0.0.1 is currently LOCKED OUT after attempt 4.
P 127.0.0.2 is currently LOCKED OUT after attempt 5.
1P 127.0.0.3 is currently LOCKED OUT after attempt 5.
P 127.0.0.1 is currently LOCKED OUT after attempt S.
® urls.py 1P 127.0.0.2 is currently LOCKED OUT after attempt 6.
2 vie y IP 127.0.0.3 is currently LOCKED OUT after attempt 6.
> env 1P 127.0.0.2 is currently LOCKED OUT after attempt 7.
IP 127.0.0.1 is currently LOCKED OUT after attempt 6.
P 127.0.0.2 is currently LOCKED OUT after attempt 8.
> _pycache 1P 127.0.0.3 is currently LOCKED QUT after attempt 7.
 management\com... | IP 127.0.0.1 is currently LOCKED OUT after attempt 7.
Authentication error on attempt 8 from IP 127.0.0.1: database is locked
cked
Attempt 1 from TP 127.0.0.2: Authentication error
simulate bruteforc...| 1p 127.0.0.1 is NOT locked out after attempt 1.
@ simulate distribute..| Lockout triggered by TP 127.0.0.2 at attempt 2.
127.0.0.2 is currently LOCKED OUT after attempt 2.
127.0.0.3 is currently LOCKED OUT after attempt 2.
127.0.0.1 is currently LOCKED OUT after attempt 2.
> migrations 127.0.0.2 is currently LOCKED OUT after attempt 3.
+ templates\ login 127.0.0.3 is currently LOCKED OUT after attempt 3.
127.0.0.1 is currently LOCKED OUT after attempt 3.
127.0.0.2 is currently LOCKED OUT after attempt 4.
127.0.0.3 is currently LOCKED OUT after attempt 4.
email_verification.... 127.0.0.1 is currently LOCKED OUT after attempt 4.
homehtm! 127.0.0.2 is currently LOCKED OUT after attempt 5.
127.0.0.3 is currently LOCKED OUT after attempt 5.
127.0.0.1 is currently LOCKED OUT after attempt 5.
127.0.0.2 is currently LOCKED OUT after attempt 6.
login.html 127.0.0.3 is currently LOCKED OUT after attempt 6.
messages.htm! 127.0.0.2 is currently LOCKED OUT after attempt 7.
> OUTLINE 127.0.0.1 is currently LOCKED OUT after attempt 6.
127.0.0.2 is currently LOCKED OUT after attempt 8.
> TELINE 127.0.0.3 is currently LOCKED OUT after attempt 7.
> MysaL Lockout triggerad by 1P 127.0.0.2 at attemot 2.

init_py

models.py

@ tests.py

v login

> _pycache

¥ create_test_user.py

simulate_password...

test progressive.lo...

contactsupporthtml

email_verification.

lockout_stats.html

lockouthtml

Figure 52: simulate_distributed_bruteforce result2

File Edit Selection View Go Run Terminal Help > ¢ [Administrator] | B~ D@0

EXPLORER y ¥ views, test_progressive_lockout.py @ simulate_bruteforce.py # simulate_distributed_bruteforce.py X

v SRC
v dashboard L g mman B
> migrations - “elp = K From L
\ templates\dashboard| PROBLEMS ~ OUTPUT DEBUGCONSOLE [TERMINAL| PORTS ~ QUERYRESULTS (PREVIEW) AZURE
security._dashboar =
127.0.0.3 is currently LOCKED OUT after attempt 6.
127.0.0.2 is currently LOCKED OUT after attempt 7.
® admin.py 127.0.0.1 is currently LOCKED OUT after attempt 6.
apps.py 127.0.0.2 is currently LOCKED OUT after attempt 8.
127.0.0.3 is currently LOCKED OUT after attempt 7.
127.0.0.3 is currently LOCKED OUT after attempt 6.
127.0.0.2 is currently LOCKED OUT after attempt 7.
urls.py 127.0.0.1 is currently LOCKED OUT after attempt 6.
@ views.py 127.0.0.2 is currently LOCKED OUT after attempt 8.
127.0.0.3 is currently LOCKED OUT after attempt 7.
127.0.0.3 is currently LOCKED OUT after attempt 7.
127.0.0.1 is currently LOCKED OUT after attempt 7.
> _pycache__ Authentication error on attempt 8 from IP 127.0.0.1: database is locked
v management\ com... | IP 127.0.0.1 is currently LOCKED OUT after attempt 7.
Authentication error on attempt 8 from IP 127.0.0.1: database is locked
Authentication error on attempt 8 from TP 127.0.0.1: database is locked
Attempt 8 from IP 127.0.0.1: Authentication error
simulate_bruteforc. 127.0.0.3 is currently LOCKED OUT after attempt 8.
simulate_distribute. 127.0.0.3 is currently LOCKED OUT after attempt 8.
127.0.0.2 is currently LOCKED OUT after attempt 9.
127.0.0.2 is currently LOCKED OUT after attempt 9.
127.0.0.3 is currently LOCKED OUT after attempt 9.
> migra 127.0.0.1 is currently LOCKED OUT after attempt 9.
v templates\ login 127.0.0.1 is currently LOCKED OUT after attempt 9.
127.0.0.2 is currently LOCKED OUT after attempt 10.
127.0.0.2 is currently LOCKED OUT after attempt 10.
127.0.0.3 is currently LOCKED QUT after attempt 10.
email_verificatio 127.0.0.3 is currently LOCKED OUT after attempt 10.
homehtm! 127.0.0.1 is currently LOCKED QUT after attempt 16.
127.0.0.1 is currently LOCKED OUT after attempt 10.
Lockout was triggered at attempt 2 by IP 127.0.0.2 after 28.35 seconds.
Lockout was triggered at attempt 2 by IP 127.0.0.2 after 28.35 seconds.
login.htm! Distributed brute force simulation completed.
messageshtml PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src>
ot pistributed brute force simulation completed.
Distributed brute force simulation completed.
PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src>

init_py

models.py
tests.py

> env

 login

> ache_

create_test_user.py

simulate_password

test_progressive_lo.

contactsupporthtml

email_verification _.

DWNNRBWAON

A

lockout_stats.html

lockouthtml

> TIMELINE
> MysaL

Figure 53: simulate_distributed_bruteforce result3

146

Key points from the output/results:

Lockout was triggered early by IP 127.0.0.2 on the 2nd attempt, effectively

locking all listed IPs out immediately.

o After lockout, subsequent attempts from all IPs were blocked, indicating that the

lockout mechanism works globally across distributed sources.

e Some authentication errors occurred (e.g., "database is locked"), which suggests

concurrent write contention — a typical issue in SQLite under parallel operations.

e« The total time to trigger and confirm lockout across all sources was 28.35

seconds.

The system demonstrated the ability to detect and block a coordinated brute-force
attack from multiple IP addresses, enforcing a global account lockout policy. This

confirms the effectiveness of the distributed brute-force mitigation strategy.

Concurrent Session Test and Results

A test was created and ran to test whether the system prevents concurrent session. The

command used: pytest logln/tests/test_concurrent_session.py --disable-warnings -q

From the output it showed that it ran successfully and concurrent session is prevented.

147

> (2 stc (Administrator] | &~ sgDE0 -

) File Edit Selection View Go Run Terminal Help <«

EXPLORER = pytestini # models.py # test login_rate_limit.py & viewspy @ middleware.py ® test_concurrent sessionpy X | < loginhtml
v SRC login >
1 t pytest

django.contrib.auth.models import User

django.test i Client
home.htmi .

logIn.models im; UserProfile

kSR 5 from django.contrib.sessions.models ir Session
lockouthtml unittest.mock rt patch
fogin.htm! rom django.test i Client, RequestFactory
logIn.middleware i ConcurrentSessionMiddleware

v login

v templates\ login

ages.html

word_reset_complete.html

word_reset_form.html —— .

@pytest.mark.django_db

word yesel_erit bl 12 @patch(fy_recaptcha’, return_value=True)
word_reset html 13 test_concurrent_s on_prevention(mock_verify recaptcha):
wordchange html 14 #

signup.html 15 user = User.objects.create_user(username="testuser2

“ tests

< userprofile.objects.get_or_create(user-user)

pycache, _or_ (

* it_.py i r3
e client1 = Client()

test_concurrent session.py 1 clidnts = client()

test login_rate_limit.py factory = RequestFactory()

% test_otp_expiration.py

23 middleware = ConcurrentSessionMiddleware(ge request:
24

25

26 loginl = client1.post("

dmin_registration.py 27 3 logini.status_code
* appspy 28
® decorators.py 29
30 session_keyl = clientl.session.session_key

test_token_expiration.py
init_py
dmin_config.py

B powershett +v [0 @ -

PROBLEMS ~ OUTPUT DEBUGCONSOLE [TERMINAL| PORTS QUERY RESULTS (PREVIEW) AZURE

PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src> pytest logIn/tests/test _concurrent session.py

tokens.py
@ > OUTLINE \Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src>

{‘;,} > TIMELINE
> MysaL

Figure 54: Concurrent session test and results

pytest and Results

pytest was ran to test all the tests of the system. The command used: pytest

All the tests were succesfull except for the ratelimit one because it was been blocked by

the ratelimit decorator in the login view. Thus suggesting that the block works.

148

Selection View Go Run Terminal Help src [Administrator] | &~ i A =]
EXPLORER ¥ models.py % test_login_rat # middleware.py @ test_concurrent_session.py login.html 1}

v SRC
v login
forms.py 2 1 = loginsystem.settings
middleware.py r = tests.py test_*.py * tests.py

AZURE [powershen +~ [0

PROBLEMS ~ OUTPUT DEBUGCONSOLE [TERMINAL| PORTS QUERY RESULTS (PREVIEW)

models.py

® signals.py *, side_effect=fake_ratelimit_decorator)
testsTpy t_login ra 1f, mock_ratelimi
e— t, mock_verify_recaptcha):
urls.py
% cache.clear()
@ userlogs.py
utils.py post_data = {
'+ self.username,
loginsystem esamiobel el s -1 N
Ot 1a-re dummy -re:

¥ views.py

> _pycache_
init_py
asgl.py
b settings.py i
response f.client.post(s
n_url, post data, REMOTE_ADDR='127.0.0.1'

1f.assertNotContains(response, "To ny login at ts", status_code=

axeslog 4
certcrt
39: in assertNotContains

& certkey
certpem repr, real_count, msg prefix, content_repr = se ert_contains(X i
= :571: in _assert_contains
CoEpem .assertqual (
= db.sqlite3
Captured log call - -
ARNTNG logTn.views:views.py:229 Failed login attempt for user testuser from IP 127.0.0.1
WARNING logIn.views:views.py:229 Failed login attempt for user testuser from IP 127.0.0.1
login.views:views.py:229 Failed login attempt for user testuser from IP 127.0.0.1
requirements.txt 1 NG django.request: : /login/
> OUTLINE login/tests/test_login_rate_limit.py::LoginRateLimitTest::test_login_rate_limit - Assertiontrror: 463 |= 2@ : Couldn't retrie.
> TIMELINE . <A A = .) B n
PS C:\Users\biotronics\Desktop\Folders\Univ ESSEX\Thesis\Assignments\Project\src> ||

> MysaL

Figure 55: pytest results

Appendix E: Dashboard Analytics and Lockout stats Logs Test

149

Dashboard Analytics View

€ C @ @ 127.00.1:8000/dashboard/security-dashboard g ra o) "Bl e 05 0 L

Brute Force Attack Prevention Dashboard

Showing data for Last 30 Days

Total Attack Attempts Blocked Attempts Prevention Success Rate

160 160 0.0%

Failed Login Heatmap

Figure 56: Security Dashboard1

¢ € @ O 127.00.1:8000/dashboard/security-dashboard/ * Mmoo & D D

IP Threats Details

IP Address | Attempts ‘ Last Attempt Location Operating System | Device Type User Agent

127.0.0.1 122 ‘ 2025-05-1509:11:00 = Unknown Location = Unknown OS Desktop Unknown
127.0.0.3 19 ‘ 2025-05-08 01:15:07 ' Unknown Location = Unknown OS Desktop Unknown

127.0.0.2 19 ‘ 2025-05-08 01:15:07 | Unknown Location = Unknown OS Desktop Unknown

Logout

© 2025. Al rights reserved

Figure 57: Security Dashboard3

150

	References

