

Enhancing Authentication Security: A Python-Based System for Brute Force

Attack Prevention

University of Essex

Master of Science in Cybersecurity

Beatrice Karimi Mutegi

Student ID: 12689392

Academic Year: 2022 - 2025

Supervisors: Dr. Oliver Buckley and Dr. Bakhtiyar Ahmed

This Dissertation is presented in part fulfilment of the requirement for the completion of

a Master of Science in Cybersecurity at the University of Essex.

2

Abstract

Brute force attacks continue to pose significant threats to information systems, often

targeting authentication mechanisms with inadequate security controls. This study

explores and implements a Python-based authentication framework designed to

mitigate such threats, particularly within Django-based systems.

The research investigates vulnerabilities commonly exploited in Python login systems,

evaluates the strengths and weaknesses of existing brute force mitigation strategies,

and proposes a secure, multi-layered defence system. The prototype integrates

CAPTCHA, time-based OTP-based two-factor authentication, IP-based rate limiting,

device fingerprinting, time-based email-token verification, logging, password

management, and account lockout mechanisms.

Quantitative simulation results demonstrate that the system successfully blocked over

98% of brute-force attempts and provided real-time analytics to administrators via a

dashboard. Additionally, user experience considerations were incorporated to balance

security and usability.

This dissertation contributes to a practical model for securing Python/Django-based

login systems, answering key research questions about effective mitigation while

identifying areas for future enhancement in usability and system adaptability.

3

Declaration

Submitted in fulfilment of the requirements for the Master of Science in Cybersecurity,

at the University of Essex

2025

The author hereby declares that this whole thesis or dissertation, unless specifically

indicated to the contrary in the text, is her own original work.

Beatrice Karimi Mutegi

MSc in Cybersecurity

4

Table of Contents

Abstract .. 2

Declaration ... 3

List of Figures.. 11

List of Tables ... 14

Chapter 1: Introduction ... 16

1.1: Background ... 16

1.2: Problem Statement ... 17

1.3: Research Objectives... 18

1.4: Research Questions ... 18

1.5: Significance of the Study ... 19

1.6: Dissertation Structure .. 20

Chapter 2: Literature Review .. 20

2.1: Overview of Authentication Security .. 20

2.1.1: Traditional Authentication Methods ... 21

2.1.2: Modern Authentication Methods ... 21

2.1.3: Authentication Methods Comparison .. 24

2.2: Brute Force Attacks and their Techniques ... 25

2.3: Existing Mitigation Strategies .. 26

2.3.1: Account Lockout Policies: ... 27

5

2.3.2: CAPTCHA and Bot Detection: .. 27

2.3.3: Rate Limiting and IP Blocking: .. 28

2.3.4: Multi-Factor Authentication (MFA): .. 28

2.3.5: Adaptive Authentication: ... 28

2.3.6: Machine learning algorithms: .. 28

2.3.8: Encryption and Password Salting: .. 29

2.3.9: Ensuring Effective Password Management: ... 29

2.3.10: Intrusion Detection Systems (IDS): ... 30

2.3.11: Artificial Intelligence (AI):... 30

2.4: Limitations of Existing Solutions .. 30

2.5: Challenges in Securing Authentication Systems ... 31

2.5.1: User Resistance and Usability Concerns: ... 31

2.5.2: Scalability:... 31

2.5.3: Evolving Attack Methods: .. 31

2.6: Research Gap .. 32

Chapter 3: Methodology ... 35

3.1: Research Design ... 35

3.1.1: Methodological Framework: .. 36

3.1.2: Justification for Python and Django: ... 37

3.2: Threat Modelling Approach .. 38

3.2.1: STRIDE Threat Modelling: .. 39

6

3.2.2: OWASP Top 10 Reference for Secure Implementation:................................ 41

3.3: System Development Approach: Agile Methodology (Adapted for Solo

Development) ... 42

3.3.1: Sprint Planning: .. 43

3.3.2: Backlog Management and Prioritization: .. 49

3.3.3: Self-Evaluation and Reflection: ... 50

3.4: Data Collection .. 50

3.4.1: Literature Review (Qualitative): ... 50

3.4.2: Test Simulations (Quantitative): .. 51

3.4.3: Usability and System Feedback Evaluation using Heuristic Evaluation

(Qualitative): ... 51

3.4.4: Logging and Dashboard Analytics: ... 51

3.5: Data Analysis Approach ... 52

3.6: Ethical and Professional Considerations ... 52

Chapter 4: System Design and Implementation ... 53

4.1: System Requirements and Specifications .. 54

4.1.1: System Architecture and Design: .. 54

4.1.2: Tools and Libraries Used: ... 56

4.2: Implementation Strategy .. 59

4.3: Security Risk Mitigation and Compliance Mapping 64

4.3.1: Secure Authentication Workflow: .. 67

7

4.4: Testing Procedures ... 68

4.4.1: Controlled Simulations: ... 69

4.4.2: Functional System Tests: .. 70

4.4.3: Usability Evaluation using Nielsen's 10 Usability Heuristics: 71

4.4.4: Dashboard Analytics: .. 72

4.4.5: Penetration Testing Approach and Tool Justification: 73

4.4.6: Ethical Considerations: ... 73

4.5: Security vs. Usability Trade-offs ... 74

Chapter 5: Discussion and Evaluation of Results .. 75

5.1: Data Presentation and Analysis .. 75

5.1.1: Brute-force Protection: .. 75

5.1.2: CAPTCHA Validation: ... 76

5.1.3: OTP Authentication: .. 76

5.1.4: Email Verification Authentication: .. 77

5.1.5: Password Expiry: .. 77

5.1.6: IP Lockout and Geolocation: ... 78

5.1.7: Admin and User Feedback:... 78

5.2: Evaluation Benchmarks and Metrics .. 79

5.2.1: Usability Evaluations: .. 79

5.2.2: Security Metrics: ... 80

5.2.3: System Performance: ... 80

8

5.3: Summary and Interpretation of the Results ... 80

5.4: Effectiveness of Addressing Research Gaps ... 81

5.5: Comparison with Existing Solutions ... 82

5.6: Challenges, Limitations and Proposed Solutions.. 84

Chapter 6: Conclusion and Recommendations .. 87

6.1: Summary of Key Findings .. 87

6.2: Alignment with Research Questions ... 88

6.3: Achievement of Research Objectives ... 91

6.4: Key Contributions to the Field ... 93

6.5: Recommendations .. 94

6.6: Future Work ... 96

6.7: Conclusion .. 96

References ... 98

Appendices .. 108

Appendix A: Setup Guide/Readme file ... 108

Appendix B: Source Code Snippets of Core Components 109

Implementation of Django-Axes on Settings.py .. 109

Login view capturing rate limit .. 110

Signup view ... 111

Email Token Verification as on tokens.py .. 112

User Access Control on Decorators.py ... 112

9

OTP-based Two-Factor Authentication (2FA) Logic on Login view 113

CAPTCHA Verification Logic on Login view .. 113

Progressive Account Lockout Implementation Code as on utils.py 114

Email Token Generator Code.. 114

Urls.py .. 115

Device Fingerprinting (User agents) implementation on Signals.py...................... 115

Google reCAPTCHA v2 settings ... 116

Appendix C: Functionality Tests... 117

Login Logic Functionality Tests ... 117

Sign-up Logic Functionality Tests ... 123

Password Reset Logic Functionality Tests .. 127

Lockout Logic Functionality Tests ... 129

Contact Support Logic Functionality Tests .. 132

Session Expiry Functionality Test ... 133

Appendix D: Simulation Tests and Results ... 135

Progressive Lockout Simulation Tests and Results .. 135

Password Expiration and Change Simulation Tests and Results 137

Time-Based OTP Expiration (Login) Simulation Tests and Results 139

Time-Based Email Token Expiration (Signup) Simulation Tests and Results 140

Brute Force Attack Simulation Tests and Results ... 141

Distributed Brute Force Attack Simulation Tests and Results 144

10

Concurrent Session Test and Results ... 147

pytest and Results .. 148

Appendix E: Dashboard Analytics and Lockout stats Logs Test....................... 149

Dashboard Analytics View .. 150

11

List of Figures

Figure 1:Traditional vs. Modern Authentication Methods ... 25

Figure 4.2: System Architecture and Component Interaction .. 56

Figure 3: Secure Login and Signup Workflow with Integrated Security Controls 68

Figure 4: Django-Axes as on settings.py ... 109

Figure 5: Rate limit on login view... 110

Figure 6: Signup view ... 111

Figure 7: Email token on tokens.py ... 112

Figure 8: User Access Control on decorators.py ... 112

Figure 9: OTP verification on Login view ... 113

Figure 10: CAPTCHA Verification on Login view ... 113

Figure 11: Progressive Lockout on utils.py .. 114

Figure 12: Email Token Generator on tokens.py ... 114

Figure 13: urls.py... 115

Figure 14: User agents on signals.py .. 115

Figure 15: Google reCAPTCHA settings ... 116

Figure 16: Login page ... 117

12

Figure 17: Login with Invalid Credentials ... 118

Figure 18: Invalid CAPTCHA ... 118

Figure 19: Unverified OTP ... 119

Figure 20: OTP resent successfully .. 120

Figure 21: Email containing OTP... 121

Figure 22: Login Successfully ... 122

Figure 23: Successfully Logged Out.. 122

Figure 24: Signup page ... 123

Figure 25: Password guide modal on signup page.. 124

Figure 26: Signup Error Handling .. 124

Figure 27: Email Verification .. 125

Figure 28: Email Verified Page .. 126

Figure 29: Password reset error handling 1 .. 127

Figure 30: Password reset error handling 2 .. 127

Figure 31: Password reset email ... 128

Figure 32: Password guide when resetting ... 128

Figure 33: Password reset successful ... 129

13

Figure 34: Account lockout page ... 130

Figure 35: Lockout email to admin .. 130

Figure 36: Account locked login page.. 131

Figure 37: User notified of locked account .. 131

Figure 38: Contact Support page .. 132

Figure 39: Customer Support Email Success .. 133

Figure 40: Session Expiry Test .. 134

Figure 41:simulate_progressive_lockout code .. 135

Figure 42: simulate_progressive_lockout result1 .. 136

Figure 43:simulate_progressive_lockout result2 ... 136

Figure 44: simulate_password_expiration Code ... 138

Figure 45: test_otp_expiration code and results .. 139

Figure 46: test_token_expiration code and results .. 140

Figure 47: simulate_bruteforce code ... 142

Figure 48:simulate_bruteforce result1 ... 143

Figure 49: simulate_bruteforce result2 .. 143

Figure 50: simulate_distributed_bruteforce code .. 145

14

Figure 51: simulate_distributed_bruteforce result1 ... 145

Figure 52: simulate_distributed_bruteforce result2 ... 146

Figure 53: simulate_distributed_bruteforce result3 ... 146

Figure 54: Concurrent session test and results ... 148

Figure 55: pytest results .. 149

Figure 56: Security Dashboard1 .. 150

Figure 57: Security Dashboard3 .. 150

List of Tables

Table 1: STRIDE Threat Modelling .. 41

Table 2: OWASP Threat Modelling .. 42

Table 3: Agile Methodology: Sprint Planning ... 49

Table 4: Tools and Libraries Used for System Development ... 59

Table 5:Security Features vs OWASP and STRIDE Compliance 66

Table 6: Usability Evaluations .. 79

Table 7: System Performance ... 80

15

Table 8: Addressed Research Gaps .. 82

Table 9: Challenges, Limitations and Proposed Solutions ... 86

Table 10: Research Questions Alignment .. 91

Table 11: Achievement of Research Objectives... 93

16

Chapter 1: Introduction

In order to combat the constant threat of brute force attacks, a recurring problem in

cybersecurity, this dissertation investigates the development of a strong authentication

system. The study focuses on designing and implementing a secure, Python-based

framework within Django, addressing key vulnerabilities in login mechanisms commonly

targeted by automated credential-guessing attempts. The implemented solution

incorporates layered defences such as CAPTCHA, optional one-time password (OTP)

verification, IP-based rate limiting, lockout policies, and real-time monitoring through an

admin dashboard. This project aims to meet the requirements of the MSc Cyber

Security program by providing a comprehensive analysis and a practical solution to

enhance authentication security. It demonstrates mastery of secure system design,

authentication, and attack prevention, aligning with MSc learning outcomes through

applied research, technical implementation, and systematic evaluation.

1.1: Background

Brute force attacks remain one of the most prevalent cybersecurity threats, targeting

authentication systems across various industries (Abdulkader , et al., 2015). These

attacks involve systematically attempting multiple credential combinations to gain

unauthorized access, often exploiting weak or poorly protected login endpoints (Deep,

et al., 2019). When authentication systems lack adequate safeguards, such attacks can

lead to serious consequences, including data breaches and reputational damage (Uma

& Padmavathi, 2013), (Cremer , et al., 2022).

17

Python, a language widely adopted in both academic and enterprise settings, facili tates

rapid web application development through frameworks like Django and Flask

(Nurhaida & Bisht , 2022). However, the default configurations in these frameworks may

not provide sufficient protection against brute-force attacks, making additional security

measures and customisation essential (Grunwaldt, 2019).

1.2: Problem Statement

While several countermeasures, including CAPTCHA, account lockout policies, and

multi-factor authentication (MFA), exist to mitigate brute force attacks, many systems

still suffer from usability challenges, false positives, and bypass vulnerabilities (Zhang,

et al., 2022). Despite the availability of various tools and strategies, Python-based login

systems in particular often lack comprehensive, user-friendly, and adaptive security

measures. This leaves applications vulnerable, especially in high-risk domains like

online banking, e-commerce, and educational platforms (Jimmy, 2024). This research

seeks to develop a Python-based authentication system within Django that incorporates

enhanced security features to address these shortcomings. The goal is to improve upon

existing methods, which, as (Nithya & Rekha, 2023) discuss, require continuous

research and development to stay ahead of evolving threats.

18

1.3: Research Objectives

The aims and objectives of this research are to:

1. Evaluate the effectiveness of existing brute force attack prevention techniques in

Python-based authentication systems.

2. Identify shortcomings in current solutions and explore potential enhancements.

3. Develop a Python-based authentication security solution within Django that is

tailored for small organizations.

4. Evaluate the usability and effectiveness of the proposed solution, ensuring a

balance between strong security and user convenience.

5. Recommend cost-effective security measures for organizations with limited

resources.

Ultimately, this research aims to enhance authentication security against brute force

attacks while maintaining secure usability, particularly for resource-limited organizations.

1.4: Research Questions

The primary research question guiding this study is: What are the most effective

methods to prevent or mitigate brute force attacks in Python-based login

systems? Below are additional research questions:

1. What vulnerabilities in Python-based login systems make them prone to brute

force attacks?

19

2. What are the advantages and limitations of current brute force prevention

mechanisms implemented in Python-based systems?

3. How can Python libraries and built-in functionalities be leveraged to strengthen

the security of login systems against brute force attacks?

4. How can security measures be integrated into Python-based login systems to

mitigate brute force attacks without compromising user experience?

1.5: Significance of the Study

This study specifically falls under the Authentication and Authorization knowledge area

within the Secure System Design and Architecture category of CyBOK (CyBOK, 2021).

It aims to assess, enhance, and develop more effective authentication methods to

mitigate brute force attacks. By incorporating better preventive techniques into Python-

based authentication systems, unauthorized access can be minimized while maintaining

usability for legitimate users (Gollmann, 2021).

This research contributes to cybersecurity by proposing an advanced authentication

model that strengthens resilience against brute force attacks. Its conclusions aim to help

organizations implement more secure python-based authentication frameworks.

Additionally, by addressing the vulnerabilities in current systems, this research aligns

with the broader goal of creating more secure and reliable authentication processes

(Burrows, et al., 1989), (Shrivastava, et al., 2024). (Abdulkader , et al., 2015) points out

that understanding the vulnerable points and potential attacks is crucial in developing

effective authentication systems.

20

1.6: Dissertation Structure

Chapter 2 reviews existing literature related to brute force attacks and Python-based

security practices. Chapter 3 details the methodology and system design, including

threat modelling, and ethical and professional considerations. Chapter 4 presents the

implementation strategy and all the simulations and security tests performed. Chapter 5

provides a critical discussion of the findings/results, evaluating the system’s

performance against established benchmarks. Chapter 6 concludes with key findings,

contributions, limitations, and recommendations for future research.

Chapter 2: Literature Review

This chapter provides a review of existing literature on authentication security

mechanisms, focusing on their effectiveness against brute force attacks. It examines

traditional and modern authentication methods, countermeasures, and their limitations,

highlighting the need for enhanced security solutions.

2.1: Overview of Authentication Security

Authentication security encompasses various methods to verify user identities before

granting system access (Farik, et al., 2016). These methods are categorized into

traditional and modern authentication techniques, each with its own vulnerabilities, as

discussed below:

21

2.1.1: Traditional Authentication Methods

 Password-Based or Single-Factor Authentication (SFA): The most common

in web authentication method (Wang & Sun, 2020), but its inherent vulnerabilities

make it a prime target for brute force attacks (Abdulkader , et al., 2015). Users

often choose weak or easily guessable passwords, and password databases are

susceptible to breaches, exposing credentials to attackers (Papathanasaki, et al.,

2022). Techniques like password salting and hashing are employed to mitigate

these risks, but are not foolproof.

 CAPTCHA: A common countermeasure to differentiate between human users

and automated bots (Papathanasaki, et al., 2022). CAPTCHAs can deter

automated brute force attacks, but often introduce usability challenges and may

be bypassed by sophisticated bots or CAPTCHA-solving services (Vugdelija, et

al., N.D.).

2.1.2: Modern Authentication Methods

 Two-Factor Authentication (2FA): To improve security, 2FA has been widely

adopted. This method requires users to provide two separate pieces of evidence

to authenticate their identity; something they know (a password) and something

they have (One Time Pin/Password (OTP), hardware security token, or biometric

feature) (Velásquez, et al., 2019). Though it strengthens protection, challenges

remain such as phishing and SIM swapping attacks (Farik, et al., 2016).

22

 Multi-Factor Authentication (MFA): This further strengthens security by

requiring evidence from at least two different categories: something you know

(password), something you have (security token), and something you are

(biometric feature) (Papathanasaki, et al., 2022). Despite its strengths, MFA

faces challenges such as:

o Implementation complexities,

o Usability concerns,

o User resistance,

o The potential for bypass (Phan, 2008), (Farik, et al., 2016), (Mohammed &

Dziyauddin, 2023).

Although more secure than Single-Factor Authentication (SFA), it still has

vulnerabilities due to design flaws, and not all implementations guarantee

enhanced security (Wee, et al., 2024). Moreover, only a small percentage of MFA

schemes use three or more factors, thus limiting their overall effectiveness

(Wang, et al., 2023).

 Biometric Authentication: Such as: fingerprint scanning, facial recognition, and

voice recognition; offer a more secure alternative to passwords (Newman, 2009).

These methods are more resistant to brute force attacks, but they are vulnerable

to other types of attacks, such as spoofing and replay attacks (De Abiega-

L'Eglisse, et al., 2022).

23

 Passwordless Authentication: Aims to eliminate passwords entirely by

leveraging methods like biometric data (fingerprint or facial recognition),

hardware tokens, or cryptographic keys (e.g., WebAuthn) (Parmar, et al., 2022).

While they offer higher security and ease of use, adoption is still limited due to

technical and user experience challenges (Yusop, et al., 2025).

 Mobile Application Authentication: Toward secure mobile applications through

proper authentication mechanisms, it's important to analyse collected data

accurately (Albesher, et al., 2024).

 Graphical Passwords: Using images, patterns, or gestures that theoretically

offers improved security over traditional alphanumeric passwords (Golofit, 2007).

They leverage human visual memory, making authentication both secure and

user-friendly, especially against cyber threats like brute-force attacks and

phishing (Raza, et al., 2012). However, their effective security can be

compromised by predictable user behaviour, potentially making them vulnerable

to informed guessing attacks (Golofit, 2007).

 Blockchain-based Authentication or Decentralized Identity Management:

Using Ethereum network, MetaMask application and others, this method uses

cryptographic techniques such as: public-private key pairs, digital signatures, and

multi-factor authentication (Park, et al., 2023). Strong cryptographic algorithms

make private keys highly resistant to brute-force attacks. However, poor key

management such as: insecure storage or weak passphrases; can introduce

24

vulnerabilities (Rivera, et al., 2024). Additionally, while blockchain itself is secure,

associated authentication mechanisms, such as: wallet passwords or recovery

phrases; can still be targeted by brute-force attacks if not properly protected

(Grimes, 2020).

2.1.3: Authentication Methods Comparison

Method Type Strengths Weaknesses Resistance

to Brute

Force

Attacks

Password-

Based

Authentication

Traditional Simple to

implement

Vulnerable to

guessing, phishing

Low (easily

targeted)

CAPTCHAs Traditional Blocks

automated bots

Usability issues,

bypassed by AI

Moderate

MFA and 2FA Modern Adds layered

security

Implementation

complexity

High

Biometric

Authentication

Modern Unique

biological traits

Spoofing, replay

attacks

High

Blockchain-

Based

Authentication

Modern Cryptographic

security

Weak key

management risks

Very High

Adaptive Modern Dynamic risk Dependency on High

25

Authentication assessment behavioural data

Figure 1:Traditional vs. Modern Authentication Methods

2.2: Brute Force Attacks and their Techniques

Brute force attacks involve systematically attempting numerous combinations of

usernames and passwords to gain unauthorized access to a system or account (Cleary,

2024). Here's a breakdown of common techniques:

 Simple Brute Force: Involves trying every possible combination of characters

until the correct password is found. The length and complexity of the password

determine the time it takes to crack it (Contrast Security, 2021), for instance, a

password consisting of only lowercase letters will be far easier to crack than one

that includes uppercase letters, numbers, and symbols.

 Dictionary Attacks: This method uses a pre-defined list of common words and

phrases, often obtained from dictionaries, books, or online databases, to guess

passwords (Raza, et al., 2012). Attackers may also modify dictionary words by

adding numbers, symbols, or capitalization to increase their chances of success.

 Credential Stuffing: Attackers use compromised username/password pairs

obtained from data breaches on other services to try and gain access to

accounts on different platforms (Ba, et al., 2021). This technique is effective

because many users reuse the same credentials across multiple websites and

applications.

26

 Hybrid Brute Force: Attackers combine dictionary words with numbers,

symbols, and capitalization to create a wider range of password guesses (Cleary,

2024).

 Reverse Brute Force: Attackers have a list of known passwords and attempt

them against multiple usernames (Cleary, 2024). This can be effective if the

attacker has obtained a list of commonly used passwords from a data breach or

other source (Hamza & Al-Janabi, 2024).

 Parallel Brute Force: Attackers use parallel techniques by dividing the search

space among available resources, thus dividing the average time to success by

the number of resources available (CAPEC, 2018).

 Obfuscation Bypass: Data obfuscation can make brute force attacks more

difficult, but it does not eliminate the risk entirely. Attackers may use various

techniques to bypass obfuscation methods and recover the original data

(Contrast Security, 2021).

2.3: Existing Mitigation Strategies

Brute force cyberattacks are often motivated by financial gain, espionage, data theft,

malware distribution, unauthorized access, identity theft, and the pursuit of power

(Cleary, 2024). To counter these threats, various brute force attack prevention

27

mechanisms have been developed, each with its own strengths and limitations. These

include:

2.3.1: Account Lockout Policies: Involves temporarily disabling user

accounts or/and IP addresses after a certain number of failed login attempts

(Herley & Florencio, 2008). While effective in preventing brute force attacks, these

policies can lead to denial-of-service vulnerabilities and user frustration (Wang, et

al., 2021). Additionally, they can be circumvented through distributed attack

methods or by targeting systems with low lockout thresholds.

2.3.2: CAPTCHA and Bot Detection: CAPTCHAs (Completely Automated

Public Turing test to tell Computers and Humans Apart) and bot detection

mechanisms are widely used to differentiate between human users and

automated bots (Vugdelija, et al., N.D.). CAPTCHAs can vary from:

 Simple math: Basic math problem (e.g., "What is 5 + 3?") to prove

they are human,

 Invisible: Requires no user interaction unless suspicious activity is

detected,

 Fun Captcha/Arkose Labs: Uses visual puzzles and tasks to identify

humans from bots,

 And many more.

While these methods can deter brute-force attacks, they may inconvenience users.

Moreover, text-based CAPTCHAs are increasingly vulnerable to machine learning-

based bypasses (Moradi & Keyvanpour, 2015). Although CAPTCHAs can be over 90%

28

effective for humans and under 1% for bots (Tariq, et al., 2023), they are not sufficient

on their own. For stronger protection, it should be combined with complementary

measures such as IP rate limiting and OTP; for a more secure, layered defence.

2.3.3: Rate Limiting and IP Blocking: Rate limiting restricts the number of

login attempts allowed within a specific time frame (Tamilkodi, et al., 2024).

However, it can be bypassed through distributed attacks originating from multiple

IP addresses, proxies or VPNs (Anon, N.D.). Additionally, it may lead to false

positives if users share IPs or use dynamic IPs. While IP blocking involves

blocking traffic from specific IP addresses that are associated with malicious

activity (Nurhaida & Bisht , 2022).

2.3.4: Multi-Factor Authentication (MFA): Enhancing authentication

security by requiring additional verification methods (Zhang, et al., 2018).

2.3.5: Adaptive Authentication: Using machine learning algorithms to

analyse user behaviour and detect anomalous login attempts (Najafabadi, et al.,

2015). Thus adjusting security measures based on the risk level of each login

attempt.

2.3.6: Machine learning algorithms: For detecting brute force attacks at

the network level, using features extracted from network flow data (Najafabadi, et

al., 2015). These models evaluate the risk of authentication attempts and can

29

trigger additional security steps, such as multi-factor authentication, for high-risk

logins (Hamza & Al-Janabi, 2024).

2.3.7: Device Fingerprinting and Behavioural Analysis: Techniques such

as device fingerprinting, which tracks the devices used for logins, and behavioural

analysis, which monitors user login patterns, can be used to identify suspicious

login attempts and prevent brute-force attacks (Nikiforakis, et al., 2013).

2.3.8: Encryption and Password Salting: Enhances password security by

adding a unique, random string (salt) to each password before hashing. This

prevents attackers from using precomputed hash tables (rainbow tables) to crack

multiple passwords at once (Vugdelija, et al., N.D.).

2.3.9: Ensuring Effective Password Management: Best practices

include: using complex and unique passwords, avoiding easily guessable

personal information, and refraining from reusing passwords across multiple

accounts (Information Commissioner's Office, 2024), (Das, et al., 2014).

Administrators and developers play a critical role in enforcing these measures by:

o deactivating unused accounts,

o implementing strict password policies,

o mandating periodic password updates (e.g., every 90 days),

o establishing complexity requirements to strengthen overall security,

o etc. (Owens & Matthews, N.D.).

30

2.3.10: Intrusion Detection Systems (IDS): These solutions (Network-

based and Host-based) analyse network traffic and system logs to detect

repeated failed login attempts, unusual access patterns, and high-volume

authentication requests that may indicate a brute force attack (Idhom, et al.,

2020).

2.3.11: Artificial Intelligence (AI): Just as Machine Learning, both of them

detect anomalies in login behaviour (Velgekar, et al., 2021). By analysing user

patterns, these technologies can identify unusual login attempts that may indicate

brute-force or credential-stuffing attacks.

2.4: Limitations of Existing Solutions

Although existing security measures offer some level of protection, they often present

usability concerns, high false positive rates, and vulnerability to social engineering

attacks (Vugdelija, et al., N.D.).

Additionally, solutions like Intrusion Detection System (IDS) alone are insufficient to stop

brute-force attacks, highlighting the need for a multi-layered approach. (Vugdelija, et al.,

N.D.). A robust and continuously evolving authentication framework is essential

(Weingart , 2002).

31

2.5: Challenges in Securing Authentication Systems

While significant strides have been made in improving authentication security,

challenges remain. Some of the most pressing issues include:

2.5.1: User Resistance and Usability Concerns: Advanced security

measures such as MFA and CAPTCHA can impact the user experience. Users

often resist changes that complicate the login process, especially if the new

mechanisms introduce friction in their day-to-day interactions with systems

(Olayinka , et al., 2024).

2.5.2: Scalability: As organizations scale, maintaining secure and effective

authentication systems becomes increasingly complex (IndiaFreeNotes, 2023).

Solutions like rate limiting and CAPTCHA must be carefully balanced to ensure

they do not disrupt legitimate users while effectively preventing attacks (Moradi &

Keyvanpour, 2015).

2.5.3: Evolving Attack Methods: Cybercriminals continuously develop

new tactics to bypass security measures. For instance, attackers may use botnets

or distributed brute-force attacks to overcome IP-based rate limiting, making it

essential to continuously update defence mechanisms (Aslan, et al., 2023).

32

2.6: Research Gap

Despite the widespread use of traditional and modern authentication methods, such as:

password-based authentication, CAPTCHA, account lockout policies, and multi-factor

authentication; significant challenges remain in preventing brute force attacks,

especially for small organizations with limited resources.

Key gaps in current solutions include:

 Effectiveness of Multi-Layered Defence Mechanisms: While individual

defence strategies like CAPTCHA, rate limiting, and account lockout have been

well-studied, there is limited research on how to effectively combine these

mechanisms into a robust, multi-layered defence strategy (Lu, et al., 2018),

(OWASP, N.D.).

This is critical for mitigating brute-force attacks, as attackers often exploit gaps in

isolated measures. More research is needed to develop integrated, adaptive

authentication systems that can respond to evolving threats.

 Usability vs. Security Trade-off: Many existing countermeasures, such as strict

account lockout or Multi-Factor Authentication (MFA) or frequent CAPTCHA

prompts; can frustrate legitimate users and disrupt workflow, particularly in

environments where user experience is critical (Olayinka , et al., 2024).

Striking the right balance between robust security and a seamless user

experience remains a challenge for many organizations (Downey & Laskowski,,

1996) .

33

 False Positives and Administrative Overhead: Static rate limiting and lockout

policies can result in false positives, inadvertently blocking legitimate users. This

leads to increased support requests, administrative overhead, and user

dissatisfaction (Nurhaida & Bisht , 2022). Addressing this without sacrificing

security is a significant gap in current solutions.

 Resource Constraints: While advanced solutions such as: adaptive

authentication or machine learning-based or Artificial Intelligence (AI)

approaches; show promise in improving security, they are often too complex or

resource-intensive for smaller organizations to implement and maintain

effectively (Aslan, et al., 2023). This presents a barrier to adoption, leaving these

organizations vulnerable to brute-force attacks (Sarveshwaran, et al., 2023).

 Bypass Vulnerabilities: Despite improvements in security measures, attackers

continue to discover ways to bypass traditional defence mechanisms (Grimes,

2020). For example, distributed IP attacks can bypass rate limiting, and

CAPTCHA-solving bots are readily available, undermining the effectiveness of

these defences (Certus Cybersecurity, 2023).

 Complexity of Blockchain for Decentralized Authentication: Blockchain

offers potential for decentralized identity management and enhanced

authentication security (Deep, et al., 2019).

However, its application in preventing brute-force attacks is still in the early

stages. Further research is needed to explore how blockchain can deliver

34

tamper-proof, decentralized authentication without relying on centralized systems

(Rivera, et al., 2024).

This research addresses these gaps by:

 Developing a Python-based authentication system using Django that

incorporates multiple, practical security measures such as: static rate limiting,

progressive account lockout, and multi-factor authentication; to provide a layered

defence against brute-force attacks.

 Focusing on solutions that are straightforward to implement and maintain,

making them accessible for organizations with limited technical or financial

resources.

 Evaluating the usability and effectiveness of these mechanisms to ensure

that security improvements do not come at the expense of legitimate user access

and productivity.

 Providing a cost-effective, scalable authentication framework that can be

adopted by small organizations, directly addressing the limitations found in

current brute-force attack prevention strategies.

By targeting the balance between robust security and practical usability, this project

seeks to provide a cost-effective and scalable authentication framework that can be

readily adopted by small organizations, while directly addressing the limitations

observed in current brute force attack prevention strategies.

35

Chapter 3: Methodology

This chapter presents the methodology used in the design, development and evaluation

of a secure Django-based login prototype system to prevent brute force attacks. It

details the research approach, threat modelling, system development planning, ethical

considerations, data collection methods, and they align with the research objectives and

gaps discussed in Chapter 2.

3.1: Research Design

A Design Science Research (DSR) methodology was adopted as it is well-suited for

solving real-world problems through the creation of functional IT artifacts. DSR

emphasizes artifact creation, evaluation, and contribution to practice and knowledge

(Hevner, et al., 2004). A mixed-methods approach was used where:

 Quantitative methods: Collecting and analysing system logs, lockout rates, OTP

use, and response times during simulated attacks, with a focus on CAPTCHA

and OTP validation, as well as dashboard analytics to assess the effectiveness of

authentication mechanisms (Bhatia, 2018).

 Qualitative methods: Literature review, STRIDE/OWASP threat modelling,

internal assessments and heuristic evaluation to identify security risks and

usability improvements (Creswell, 2017) .

Agile principles supported iterative testing and refinement across development sprints,

enabling both theoretical and practical insights into authentication security (Sutherland,

2014).

36

3.1.1: Methodological Framework:

This study followed the DSR methodology which includes the following key steps

(Hevner, et al., 2004):

DSR Step Activities Tools/Techniques

1. Problem

Identification and

Motivation

Identified brute-force attack threats

and usability/security issues in

existing authentication methods.

 Literature review,

 STRIDE threat

modelling

 OWASP threat

modelling

2. Define the

Objectives of a

Solution

Outlined security goals:

 Multi-layered authentication

(CAPTCHA, 2FA, rate limiting),

 Usability and scalability.

 Research

questions,

 system objectives,

 sprint planning

3. Design and

Development

Developed Django-based

authentication system with integrated

brute-force mitigation techniques.

 Python,

 Django,

 SQLite3,

 Agile methodology

4. Demonstration Conducted brute-force simulations

using custom scripts and automated

tools.

 Simulation tools,

 CLI-based attack

scripts

5. Evaluation Evaluated system through:

 functional testing,

 Manual testing,

 brute-force

37

 usability heuristics,

 threat models (STRIDE, OWASP).

simulation tools,

 dashboard

analytics

6. Communication  Documented and presented the

system and findings through this

dissertation and future publications.

 Academic writing,

 GitHub repository,

 Presentation

 E-portfolio

3.1.2: Justification for Python and Django:

Python was selected for its simplicity, rapid development capabilities, and robust

libraries that support secure web application development (Lutz, 2013). Between

popular frameworks, Django was chosen over flask because it offers extensive built-in

features and support for libraries for user authentication, database integration, and form

validation (Django Software Foundation, 2023). This makes it ideal for implementing a

structured and secure authentication system. In contrast, Flask requires more manual

setup and third-party extensions, which can introduce inconsistencies or additional

vulnerabilities (Devndra, 2020).

While Python may lack the performance of languages like C or Java, its readability and

community support make it suitable for secure web application development. However,

Django’s default security features require customization and hardening to effectively

defend against brute-force attack (Idris, et al., 2020).

38

3.2: Threat Modelling Approach

Although this research focuses on brute-force attack prevention, broader threat

modelling frameworks such as OWASP and STRIDE were selectively integrated to

maintain focus without diluting the core objective. Instead of applying these frameworks

in full, relevant concepts such as rate limiting, authentication failure handling, and

credential protection were incorporated.

A hybrid approach was adopted, whereby STRIDE was used for architectural threat

identification within the login system, while OWASP served as a reference for secure

implementation, particularly around login abuse and access control (OWASP, 2021),

(Department for Science, Innovation & Technology, 2024)

Additionally, the study also recognizes the evolving nature of authentication threats.

While traditional password-based methods are still common, they remain vulnerable to

brute-force and dictionary attacks, especially when passwords are reused or weak

(Rashidi & Garg, 2021).

As recommended by OWASP (CWE Content Team, 2021) and (NIST, 2025), the system

incorporates layered defences including: CAPTCHA, OTP, and account lockouts; to

reduce the risk of unauthorized access while aligning with modern security standards.

This targeted application of STRIDE and OWASP ensures the authentication system is

both resilient and realistic for deployment in Django-based environments, without

overcomplicating the scope of the research (Khan, et al., 2017).

39

3.2.1: STRIDE Threat Modelling:

STRIDE was applied to assess threats within the core areas of the login system

(Department for Science, Innovation & Technology, 2024), (Khan, et al., 2017). The

following table outlines identified threats and the corresponding mitigations:

STRIDE Threat Mitigations Applied

Spoofing (impersonating

a user or service)

Mitigated through:

 strong passwords,

 email verification during signup,

 time-based OTP-based-two-factor authentication

(2FA) during login,

 device fingerprinting using user-agent and IP address

logging

Tampering (modifying

data or code)

Addressed using:

 input validation,

 secure hashing of passwords,

 CSRF tokens,

 Secure session cookies,

 HTTPS

Repudiation (denying

performing an action)

 Authentication logging using Django Axes whereby

Login attempts, both successful and failed, are logged

with IP and timestamp data to ensure traceability,

 device fingerprinting (lockout logging with OS/device

40

info),

 email alerts to admin on lockout events,

 lockout logs are traceable on security_dashboard and

lockout_stats that has access control

Information Disclosure

(exposing confidential

information)

 Sensitive error messages are suppressed,

 data in transit is protected through HTTPS,

 CAPTCHA (google reCAPTCHA v2),

 session expiry,

 TOTP expiration (10 min limit),

 email OTP used to control access

Denial of Service

(disrupting service

availability)

 Progressive account lockout mechanism with

escalating timeouts (5 to 60 mins),

 django-ratelimit decorator (@ratelimit(key=...,

rate='5/15m'))

 lockout status tracked and enforced via cache,

 reCAPTCHA to block automated abuse

Elevation of Privilege

(gaining unauthorized

access or privileges)

 Role-based access control on admin views,

 optional 2FA for privileged users,

 enforced password complexity,

 forced password expiration,

 decorators protect restricted pages,

41

 secure user creation whereby user’s account remains

inactive until the user verifies a time-based email

token and profile tracking

Table 1: STRIDE Threat Modelling

While full STRIDE implementation was beyond the project’s scope, key elements such

as: Spoofing (via authentication hardening) and Denial of Service (via rate limiting);

were selectively applied. This focused use of STRIDE principles ensures alignment with

industry best practices while maintaining a clear emphasis on brute-force attack

mitigation.

3.2.2: OWASP Top 10 Reference for Secure Implementation:

This research does not aim to address all OWASP Top 10 vulnerabilities

comprehensively. Instead, relevant risks were selectively referenced during

implementation to validate the system’s security posture. This ensures adherence to

baseline standards while keeping the focus on brute-force prevention (OWASP, 2021).

OWASP Risks Applied Mechanism

A01:2021 – Broken Access

Control

 Restricted access to administrative views using

Django’s built-in permission system and role-based

access logic

A02:2021 – Cryptographic

Failures

 Secure password hashing using Django’s PBKDF2,

 use of randomly generated, time-bound tokens for

email verification and OTP

42

A07:2021 – Identification

and Authentication

Failures

Implementation of:

 account lockout thresholds,

 Google reCAPTCHA,

 time-based OTP-based 2FA to enforce layered

authentication security,

 username/IP based progressive lockouts,

 time-based email verification during signup

A09:2021 – Security

Logging and Monitoring

Failures

 Login attempts logged in LockoutLog,

 admin alerted via send_mail() on lockout,

 logs include device, OS, user agent, and location (if

available)

 Error handling

A10:2021 – Server-Side

Request Forgery (SSRF)

 External requests (e.g., IP location during lockout)

are isolated,

 error-handled and sanitized,

 minimal reliance on external APIs,

 hardened request handling in lockout_stats

Table 2: OWASP Threat Modelling

3.3: System Development Approach: Agile Methodology (Adapted for Solo

Development)

A lightweight Agile development methodology was adopted to manage implementation

efficiently, tailored for solo research without team collaboration or external feedback

43

(Purba & Ramli, 2022). Agile’s iterative and flexible nature supported continuous

development, integration of security features, testing, and refinement in manageable

increments (Moyo & Mnkandla, 2019).

3.3.1: Sprint Planning: A solo-adapted Agile methodology guided

development was adapted, each lasting approximately 3-5 weeks.

Sprint Key Tasks Objectives Tools /

Frameworks

Sprint 1:

 System

Initialization,

 Project Setup,

 User

Management

 Set up Django

project

 Extend Django

UserProfile

 Configure user

models

 Basic UI templates

 Create clear and

minimalistic pages

 Set-up the views

and urls.py

 Install and

upgrade Django

dependencies like

pipenv, etc

 Django,

 Allauth,

 HTML/CSS

Sprint 2:

 Configuration

of Login,

Signup,

Customer

Support Forms

and Pages

 Configure user

models

 Ensure Input is

validated on forms

 Error handling

messages

 Handle email

 Establish user

registration and

login foundation

with verified

accounts

 Improve UX and

resilience under

 Django Auth

 HTML/CSS,

 CSRF token

 Forms.py,

 send_mail,

fail_silently=

True

44

failures silently

 Disable user

enumeration

failure

Sprint 3:

 Basic

Authentication

 Configure

Decorators for

Access Control

and

Authorization

 Password

Guidelines

Modal

 Configure basic

authentication

 Configure password

validators

 Create and

configure decorators

to protect views

 Create a modal that

helps user know the

guidelines of

creating a stronger

password as per the

system settings.

 Establish

functional base for

authentication flow

and secure

account creation.

 Establish and set

the guidelines that

can help the user

create stronger

passwords.

 Django

 HTTP/CSS

 Decorators.

py

 CSRF token

Sprint 4:

 Session

Management,

 Forced

Password

Expiry,

 Password

 Enforce session

expiry & logout rules

 Enforce concurrent

sessions

 Password rotation

after 90 days

 Password Expiry

 Strengthen

session security,

usability, and

ensure feature

completeness

 Enforce access

controls

 Django

Settings,

 Sessions,

 CSRF,

 Alerts

 HTML/CSS

 decorators

45

Reset Option

 Final

Hardening (e.g.

Authorization

and Access

Control)

form

 Password reset

option

 Add error handling,

user messaging

 Final internal

usability review

 Protect views with

decorators

 Giving user option

of resetting the

password in the

event of the user

forgetting the

password.

Sprint 5:

 Brute Force

Detection,

 Progressive

Lockout

System

 Rate Limiting

 Implement django-

ratelimit

 Cache-based

lockout logic

 Design LockoutLog

model

 Create a lockout

page for after failed

attempts

 Set progressive

lockout thresholds

(3/5/10)

 Prevent brute-

force login

attempts via

IP/user-based

throttling and

caching

 Django-

ratelimit,

 Django-

axes,

 Cache,

 Custom

middleware,

 HTML/CSS

Sprint 6:

 Time-based

 Integrate django-

two-factor-auth and

 Enhance

authentication

 PyOTP,

django-two-

46

OTP-Based

Two-Factor

Authentication

(2FA)

PyOTP

 Configure OTP

expiration (for 10-

minutes)

 Handle resend OTP

and expired token

flows

 Internal test cases

for OTP logic

robustness using

optional email-

based OTP with

expiration

enforcement

factor-auth,

 SMTP email

 Timezone

Sprint 7:

 Time-based

Email Token

Generator and

Verification

during Sign up

 Setup time-based

email tokens to be

sent to user during

signup

 User is inactive until

the email is verified

 User remain

inactive until email

verification is

successful

 Django

 SMTP

email,

Sprint 8:

 CAPTCHA

Integration &

Bot Defence

 Replace hCaptcha

with Google

reCAPTCHA v2

 Server-side

CAPTCHA validation

 Trigger CAPTCHA

dynamically after 3

failed logins

 Block automated

and bot-based

login abuse

 Google

reCAPTCHA

v2,

 Requests,

 JavaScript

47

 Add CAPTCHA fail

logging

Sprint 9:

 Logging,

 Device

Fingerprinting

 Geolocation

 Admin Alerts

 Collect device info:

OS, browser, IP,

location

 Log events in

LockoutLog with

geolocation

 Notify admin via

email for suspicious

activity

 Provide forensic

and threat insights

 send_mail

 user agent

 parser,

 IP/geolocati

on,

 LockoutLog

Sprint 10:

 Heuristic

Evaluation &

UX Review

 Apply Nielsen’s 10

usability heuristics,

 Internal

walkthroughs with

test accounts,

 Refine navigation

and UI clarity

 Ensure usability

aligns with

security.

 Nielsen

Heuristics,

manual UX

testing

Sprint 11:

 Dashboard

Visualization

for Admin

Security

 Create dashboard

app

 Develop

security_dashboard

page with Chart.js

 Visualize security

threats and user

behaviour

 Django,

 Chart.js

 GeoIP2,

 Recharts,

 RBAC,

48

Analytics

 Creation of

lockout_stats

page for

Logging

 Build lockout_stats p

age

 Implement heatmap

of failed login

geolocation

 Visualize

CAPTCHA/OTP

success/fail rates

trends

 Role-restricted and

Admin-only access

to dashboard

analytics and

lockout_stats

 HTML/CSS

 VScode,

Sprint 12:

 Simulation &

Testing

 Simulate brute-force

attacks

 Log responses to

failed login attempts

 Evaluate false

positives, OTP

bypass attempts

 Confirm the security

dashboard logs data

 Validate

robustness under

attack scenarios

 Internal

simulation

scripts like:

Brute force

attack

simulation

test

49

Sprint 13:

 Final Polish

and

Documentation

 Final testing and

bug fixes

 Code cleanup, inline

comments,

docstrings,

 Document sprint

retrospectives

 Ensure project

quality and

maintainability

 VS Code,

 GitHub,

 Markdown

Table 3: Agile Methodology: Sprint Planning

3.3.2: Backlog Management and Prioritization: A backlog of tasks was

maintained and updated regularly based on system performance and technical

feasibility. Features were prioritized based on their:

 Alignment with research objectives (e.g., brute force protection)

 Technical feasibility

 Interdependencies (e.g., CAPTCHA after lockout mechanism)

 Security criticality (e.g., enforcing OTP before role-based access)

Tasks were re-prioritized after retrospectives if tests and simulations indicated

weaknesses in security response or usability friction. For example, integrating

CAPTCHA in Sprint 8 was time-consuming due to challenges with validation

handling during testing. As a result, I temporarily moved on to later sprints and

returned to Sprint 8 afterward to complete the integration.

50

3.3.3: Self-Evaluation and Reflection: At the conclusion of each sprint, a

solo retrospective was performed focusing on:

 Progress vs. expected sprint goals

 Issues encountered (e.g., CAPTCHA token timing, OTP delays)

 Feedback from internal testing and simulations

 Code quality and maintainability review

Lessons learned informed the planning for the next sprint. For instance, after

Sprint 5, the need for granular lockout logging (device fingerprinting, geolocation)

became apparent, leading to its inclusion in the cycle.

3.4: Data Collection

Since no human participants were involved, the study relied on internal simulations,

automated system testing, simulated attack scenarios, heuristic evaluation, and system

event logs (Norman & Kirakowski, 2018). These approaches provided comprehensive

insights into the system's robustness, performance, and resistance to brute-force

attacks.

3.4.1: Literature Review (Qualitative): A systematic literature review was

conducted to analyse existing authentication security mechanisms, brute force

attack methodologies, and countermeasures (Velásquez, et al., 2018). This

helped establish a foundation for the proposed security enhancements.

51

3.4.2: Test Simulations (Quantitative): A series of controlled test

simulations were designed and executed to evaluate the behaviour of the Django-

based secure authentication system under various conditions (Palmieri, 2013).

These tests focused on replicating real-world attack patterns and legitimate user

behaviour.

3.4.3: Usability and System Feedback Evaluation using Heuristic

Evaluation (Qualitative): With no external users involved, usability was

assessed internally through heuristic evaluation based on Nielsen’s 10 Usability

Heuristics (Nielsen & Molich, 1990). The system’s interface and interaction flows

were systematically reviewed, focusing on error prevention, clarity, recovery from

failures, and feedback mechanisms (Downey & Laskowski,, 1996). Documented

observations guided interface refinements to enhance overall usability while

maintaining a high level of security (Lodhi, 2010).

3.4.4: Logging and Dashboard Analytics: Detailed logs of authentication

events were recorded and further analysed using the custom-built admin

dashboard. The dashboard visualized key security metrics such as:

 Lockout frequency by IP address and time

 Geolocation of failed login attempts

 CAPTCHA failure rates

 OTP validation success and failure trends

52

These visual insights helped validate the effectiveness of implemented security

controls, identify abnormal activity patterns, and ensure that lockouts and

challenges were functioning as intended.

3.5: Data Analysis Approach

Each security feature implemented in the Django authentication system was analysed

based on predefined success criteria and the outcome of controlled simulations. The

analysis considered the system's resilience to attacks, usability under pressure, and the

effectiveness of feedback mechanisms.

3.6: Ethical and Professional Considerations

Ethical and professional standards were maintained throughout the research process.

All testing were performed in a closed development environment using artificial user

accounts and simulated data, ensuring that no real individuals or personal data were

involved at any stage (Sanjari, et al., 2014).

The following ethical principles and professional practices were applied:

 Privacy and Consent: No individual user data was collected or used. All

simulations utilized are fictitious credentials generated for testing purposes only.

No human subjects were involved, thus eliminating the need for consent

procedures (Europe Commission, 2013).

53

 Confidentiality: All logs and test data were anonymized using hashed identifiers

and securely stored on an encrypted local drive. After the analysis was

completed, the data was permanently deleted to prevent future access or

misuse.

 GDPR Compliance: The project adhered to GDPR principles by implementing

secure coding practices, input validation, and strict access controls. Automated

logging mechanisms were configured to exclude any potentially identifiable

information, and simulated data was processed in accordance with data

minimization principles (Europe Commission, 2013).

 Privacy and Data Protection: Authentication logs and security events were

generated via automated brute-force attack simulations. These logs were

anonymized, and no real IP addresses, usernames, or emails were involved. All

datasets were either synthetically generated or derived from publicly available

academic resources and not from human participants (Sanjari, et al., 2014).

Chapter 4: System Design and Implementation

This chapter outlines the design and implementation of the Django-based authentication

system developed to prevent brute force attacks. It details the system’s architecture, key

components, and the security features integrated, such as CAPTCHA, rate limiting,

OTP-based 2FA, and account lockout. The implementation was guided by best

practices from OWASP and STRIDE, with a focus on usability, modularity, and security.

The chapter also covers testing procedures, dashboard analytics, and development

54

challenges. To support the explanations, relevant screenshots of the Django application

and code snippets are included in the appendices.

4.1: System Requirements and Specifications

The prototype was developed using the Django web framework (Python-based), chosen

for its robustness and modular security features (Dauzon, et al., 2016). The

development environment includes:

 Programming Language: Python (3.10+)

 Web Framework: Django (4.x)

 Database: SQLite (for development), PostgreSQL (recommended for

deployment or production)

 Authentication Libraries: Django Allauth, PyOTP, qrcode

 Frontend: HTML5, CSS, JavaScript (for user interactions).

 Development Tools: Visual Studio Code, GitHub, and Git for version control

 Operating System: Windows 11

The authentication system is built on Django’s Model-View-Template (MVT)

architecture, which cleanly separates the data model, user interface, and application

logic (Django Software Foundation, 2015).

4.1.1: System Architecture and Design: Built using Django, the system

follows a modular design that separates logic, presentation, and data layers to

enhance maintainability, scalability, and security (Nurhaida & Bisht , 2022),

(PyLessons, 2022), (Django Software Foundation, 2023). The components

making up the login system include:

55

 Django Views: views.py to handle login, signup, lockout, reCAPTCHA, OTP

email verification logic.

 Templates: templates.py to render HTML for User Interface, i.e. login, signup,

lockout, home and other pages.

 Models: models.py to store user data, OTP codes, lockout logs.

 Forms: forms.py to validate user input for login, registration and customer

support forms.

 Middleware: middleware.py for failed login detection, session tracking.

 Signals: signals.py to automate user profile creation, lockout email alerts.

 Utilities: utils.py to provide helper functions for OTP generation, email sending,

and CAPTCHA verification.

 Tokens: tokens.py to manage secure email verification & OTP generation.

 Decorators: decorators.py to protect views (e.g., RBAC, 2FA enforcement).

 Settings: settings.py to configure security policies (sessions, email, rate limiting,

OTP expiry, etc)

 Userlogs: userlogs.py to sore failed login attempts, logs data for admin analytics

dashboard and lockout stats page.

Below is a clear visual representation of the flow of the components from the user

through the Django authentication system.

56

Figure 4.2: System Architecture and Component Interaction

4.1.2: Tools and Libraries Used: The following, as implemented from

(Django Software Foundation, 2015), (Django, N.D.), (Dauzon, et al., 2016),

57

(PyLessons, 2022), (Makai, N.D.), (Django Software Foundation, 2023),

(Nurhaida & Bisht , 2022), (Socol, N.D.); are the python and Django tools and

libraries used in the development of the login system prototype.

Tool / Library Purpose

Django (core framework) Web application framework.

requests Sends HTTP requests to

external services, such as

Google reCAPTCHA.

django.contrib.auth Handles authentication,

login, logout, and password

management.

django_ratelimit Implements rate limiting.

django_axes and axes.signals.user_locked_out Tracks and enforces account

lockouts based on repeated

login failures.

pyotp Generates time-based OTPs

(one-time pins/passwords).

django.contrib.auth.tokens.default_token_generator Generates secure email

verification tokens.

django.utils.timezone For timezone-aware

timestamps and session

58

tracking.

django-lockout Lockout mechanism

google reCAPTCHA Prevents bot logins by

verifying human interaction

django.core.cache Stores failed login attempts

for temporary lockout

enforcement.

logging Records login attempts,

errors, and lockout events

for auditing.

http.client To make HTTP requests to

ip-api.com for geolocation

lookup based on IP.

user_agents Parses user-agent strings to

identify device and operating

system info.

messages To provide user feedback via

status messages on the

frontend.

django.core.mail / EmailMessage Sends account verification

and lockout notification

emails.

59

utils.py Contains helper functions

like OTP generation and

email sending.

Custom forms and models Manage user input validation

and data storage (e.g.,

OTPs, lockout logs).

Chart.js Analytics dashboard

Table 4: Tools and Libraries Used for System Development

4.2: Implementation Strategy

Focusing on brute force attack prevention, (Django Software Foundation, 2023),

(PyLessons, 2022); the authentication system is enhanced with both Django inbuilt and

custom security mechanisms such as:

 Password Validators: Enforce strong passwords using Django’s built-in

validators, reducing the risk of credential stuffing and dictionary attacks. For

instance: passwords should have more than 8 characters, not be the same as

the last 5 passwords, etc (Crudu & Team, 2024).

 Multi-Factor Authentication (MFA): Integrated with a Time-based One Time Pin

(TOTP) during login, users receive an OTP in their email inbox (or in spams

folder) and they must provide the correct OTP within the time window (10

minutes) so as to complete login (Mayorga & Yoo, 2025).

60

 Rate Limiting: Applies to username and IP to prevent distributed brute-force

attacks (Anon, N.D.). Failed attempts are cached with a 5 attempts/15-minute

timeout, and exceeding thresholds triggers lockouts and notification emails

(Socol, N.D.).

 Google reCAPTCHA v2 Integration: Implemented and verified on the server-

side before the authentication, effectively blocking automated login attempts and

mitigating bot threats. This version was chosen for its advanced risk analysis

engine that assesses user behaviour beyond static challenges (Google, 2025),

(PyLessons, 2022).

 User Enumeration Prevention: This happens when an attacker can distinguish

between valid and invalid usernames based on login error messages (Macsinoiu,

2024). To prevent this, the login view’s error message was modified from "Invalid

username or password", to “Invalid Credentials”. This allows an attacker not to

determine whether a username exists (Agghey , et al., 2021).

 IP and Device Fingerprinting: After a lockout, it captures device info, OS,

browser, and location via IP lookup (Yonkeu, 2020). The captured information is

then logged to the security_dashboard, lockout_stats and the admin also

receives an email alert (Django-Axes, N.D.).

 Brute Force Detection: Login attempts are monitored; after a set number of

failed attempts, the system triggers a cooldown or account lockout (Nurhaida &

Bisht , 2022).

61

 Hashing: of passwords: Django's default PBKDF2 hashing with SHA256

ensures that user passwords are securely stored and resistant to offline cracking

(Django Software Foundation, 2023).

 Signup and Email Verification: Users are registered inactive during signup until

they verify their email via a unique, time-sensitive, tokenized activation link

(Olagbuji, 2023). This prevents automated or fraudulent registrations and

ensures the validity of user email addresses (Dauzon, et al., 2016).

 Account Lockout (Progressively timed): After 3 failed attempts per username

or 10 per IP, the system locks the account and blocks the IP and username,

respectively, and logs the event with device and OS metadata for forensic

analysis (OWASP, 2025). The account’s lockout time is progressive, whereby

cooldowns are increased after subsequent failures.

 Role-Based Access Control (RBAC) and Authorization: Implemented using

custom decorators like @unauthenticated_user, @login_required, and Django’s

built-in @staff_member_required to restrict view access based on user roles and

authentication status (Django, N.D.). Signals are also used to trigger security

actions such as logging failed login attempts or initiating lockouts on

unauthorized access (Nurhaida & Bisht , 2022; Yonkeu, 2020).

 Error Handling and User Feedback: Throughout the authentication process,

the system provides clear feedback messages for errors, robust logging and

monitoring through:

62

o Message “Invalid credentials” during login without making it clear if the

cause is invalid password or username.

o During sign up, log in and customer support the user gets clear messages

o Expired OTP during log in

o Expired email verification token during signup

o CAPTCHA failure

o Detailed lockout logging to database (LockoutLog model)

o Automated admin alerts for suspicious activities

o Graceful failure handling in email services (fail_silently=True)

This provides user feedback and logs failures for audit purposes.

 Session Management: Implemented strict session expiration policies and logout

mechanisms after a configurable period of inactivity thus reducing the risk of

session hijacking (Django, N.D.). The system enforces:

o Automatic session expiration after 30 minutes of inactivity

(SESSION_COOKIE_AGE) (Django Software Foundation, 2025)

o Concurrent session prevention through last activity tracking (Fluid attacks:

help center, 2024)

 Forced Password Expiry: Users are prompted to change their password after a

set duration, enforcing periodic credential updates. The forced password rotation

is every 90 days (PASSWORD_EXPIRE_DAYS check) (Django, N.D.).

63

 Logging and Monitoring: Django's logging framework tracks authentication

attempts and anomalies, recording lockout events with details like user agent,

OS, device type, and IP address (Django-Axes, N.D.). When a lockout occurs,

users receive an on-screen notification and are redirected to a lockout page. Alert

emails are sent to administrators, and events are logged in an admin-only

security dashboard and lockout statistics page. This enhances transparency and

enables rapid incident response.

 Alerts emailed to the admin: When a user is locked out, the app automatically

sends an email alerting the admin about the incident, thus enhancing

transparency and fast incident response (Django Software Foundation, 2025).

 API Security: Secure REST API endpoints using Django REST Framework

(DRF) and token-based authentication (Django Software Foundation, 2023).

 Input Validation: Monitors all the input entered in the forms and shows clear

error/valid messages.

 Password Reset Option: Accessed from the login page, the user can reset the

password in the event of forgetfulness (Rashidi & Garg, 2021).

 Password Creation Guidelines Modal: Found on the signup, password change

and password reset page, it guides the user in creation of a stronger password

as per the system’s settings (Das, et al., 2014).

 Admin Dashboard: A dashboard that the admin uses to monitor Lockout logs,

heatmap data, threat IPs, CAPTCHA stats, etc.

64

 Code Quality and Maintainability:

o Modularization: Logic is separated into utilities, forms, and decorators for

reusability (Django Software Foundation, 2015).

o Logging: All authentication events, errors, and lockouts are logged for

audit and debugging (Django Software Foundation, 2025).

o Extensibility: The system can be extended to support additional factors or

integrate with external identity providers in future development phases

(Nurhaida & Bisht , 2022).

4.3: Security Risk Mitigation and Compliance Mapping

This section maps the implemented security features of the Django authentication

system to specific risks identified through STRIDE threat modelling and the OWASP Top

10 vulnerabilities.

It demonstrates how each security control aligns with secure design best practices and

addresses the threats outlined in the methodology chapter (OWASP, 2021),

(Department for Science, Innovation & Technology, 2024), (Nurhaida & Bisht , 2022),

(Django Software Foundation, 2023).

The summary table below presents each mitigation alongside the corresponding threats

it addresses.

65

Security Feature OWASP Risk

Addressed

STRIDE Threat

Addressed

Implementation in Django

System

Email Verification

(Signup)

A07: Identification

& Authentication

Failures

Spoofing Inactive accounts until

email verified using secure

token

Password

Hashing

(PBKDF2)

A02:

Cryptographic

Failures

Tampering,

Information

Disclosure

Django’s default PBKDF2

with SHA-256 hashing

Account Lockout

& Rate Limiting

A07: Identification

& Authentication

Failures

Denial of

Service

Progressive lockouts via

cache and rate-limiting

Google

reCAPTCHA v2

A07: Identification

& Authentication

Failures

Denial of

Service

CAPTCHA triggered after

failed attempts; blocks bots

OTP-based 2FA

(Email OTP)

A07: Identification

& Authentication

Failures

Spoofing,

Elevation of

Privilege

PyOTP with expiry logic;

required on login for secure

accounts

Role-Based

Access Control

(RBAC)

A01: Broken

Access Control

Elevation of

Privilege

Django decorators and

permission system for view

restriction

66

Secure Session

Management

A02:

Cryptographic

Failures

Tampering Session timeout, CSRF

tokens and concurrent

sessions prevention

Suppressed

Error Messages

A02:

Cryptographic

Failures

Information

Disclosure

Generic login error

messages; no field-specific

feedback

Device

Fingerprinting &

IP Logging

A09: Logging &

Monitoring

Failures

Repudiation Captures browser, OS, IP;

logs to LockoutLog and

alerts admin

Admin Alerts

(Email)

A09: Logging &

Monitoring

Failures

Repudiation,

Denial of

Service

Email notification to admin

on lockout or abnormal

login attempts

GeoIP Location

Tracking

A09: Logging &

Monitoring

Failures

Information

Disclosure

Uses GeoIP2 to trace login

attempt origins and track

lockout patterns

Heuristic

Evaluation of UX

Not directly

mapped

Not directly

mapped

Aligns system usability with

security controls (e.g., OTP

clarity, CAPTCHA

feedback)

Table 5:Security Features vs OWASP and STRIDE Compliance

67

While the implemented security features align with OWASP and STRIDE, no security

model offers complete protection. Controls such as CAPTCHA and account lockouts

rely on assumptions about attacker behaviour and may be bypassed by advanced or

distributed attacks. Additionally, optional 2FA reduces effectiveness if not enforced

system-wide. Therefore, these measures must be validated through realistic attack

simulations. (Palmieri, 2013).

4.3.1: Secure Authentication Workflow: The activity diagram below

illustrates the end-to-end workflow for user authentication, including both login

and signup processes (Django, N.D.). It integrates security controls such as email

verification, CAPTCHA validation, OTP-based two-factor authentication, and

account lockout logic. It highlights key decision points that mitigate spoofing,

brute-force, and automated attacks.

68

Figure 3: Secure Login and Signup Workflow with Integrated Security Controls

4.4: Testing Procedures

A robust testing strategy is essential to ensure the security, reliability, and usability of

authentication systems (OWASP, N.D.). While no external users were involved, the

system was rigorously tested using custom simulations, unit and integration tests,

69

heuristic evaluation, and dashboard analytics. Testing combined manual interactions

with automated assessments to validate functionality and identify potential weaknesses.

4.4.1: Controlled Simulations: The following controlled simulations

evaluated core defensive mechanisms, documenting inputs, system responses,

triggered alerts, and observable behaviours (Palmieri, 2013). Detailed results are

provided in the appendices.

 Brute-force Attack Simulations: Used scripts to automate login attempts (from

a single IP address), to test the effectiveness of rate-limiting and account lockout

logic.

 Distributed Brute-force attack Simulation: Simulated login attempts from

multiple IP addresses tested the system’s ability to detect and block distributed

brute-force attacks. The lockout mechanism was evaluated for effectiveness

against attacks originating from diverse geographical locations and IPs.

 Token Expiration Simulation: A scenario was created to test the expiration of

authentication tokens after a specified duration. Tokens were manually set to

expire, and the system’s response to expired tokens was observed to ensure that

users were properly logged out and required to authenticate again.

 OTP Expiration Simulation: The expiration of One-Time Passwords (OTPs)

was tested by simulating OTP generation and allowing the expiration time to

elapse. The system was then checked to ensure it would reject expired OTPs,

prompting the user to request a new one.

70

 Password Expiry Enforcement: The logic for forced password expiration after

90 days was tested by modifying the test user’s account creation date to 91 days

ago.

 Progressive Account Lockout: Tested the cache-based progressive lockout

mechanism with thresholds (e.g., 5, 10, 15 attempts) and verified that

IP/geolocation was correctly logged.

 Create User simulation: Since no real users were involved in the testing phase,

a custom create_user script was developed to generate test accounts. This

allowed for consistent simulation of user behaviour across various authentication

scenarios, including login, signup, OTP validation, and account lockout.

 Concurrent Session test: Evaluated the system’s handling of multiple

simultaneous login sessions from the same user account to ensure proper

session management and prevent session hijacking or unauthorized access.

4.4.2: Functional System Tests: The following were the functional system

tests done:

 Login and Signup Testing: Verified user authentication, input validation, error

handling and password strength validation.

 OTP (2FA) Workflow Testing: Confirmed time-based OTP delivery, validation,

and expiration handling using django-otp and django-two-factor-auth.

 reCAPTCHA Validation: Ensured that login forms only proceeded when

CAPTCHA was correctly solved, blocking automated and failed attempts.

71

 Input Validation: Ensured validation on all user input fields and forms (login,

signup, contact support).

 Account Lockout Alert: Tested that admin gets alerted during a lockout and

verified lockout logging with IP and geolocation.

 Email Verification: Confirmed proper sending and handling of verification

emails, activation link validation and account status updates.

 Access Control and Authorization: Confirmed that pages are only accessible

to authorized users as per their roles.

 Logging and Lockout Dashboard Analytics: Verified logging security

dashboard, and lockout stats to enhance transparency and swift incidence

response.

 Session and Credential Handling: Validated session timeout policies, session

reinstatement, and logout procedures.

4.4.3: Usability Evaluation using Nielsen's 10 Usability Heuristics:

Since no external users were involved in the testing phase, the usability of the

authentication system was assessed internally using Nielsen's 10 Usability

Heuristics (Nielsen & Molich, 1990), (Lodhi, 2010). Key aspects examined

included:

 Clarity of system messages: Clear messages were displayed on CAPTCHA

failure, OTP expiry, and lockout events, example: "Account locked due to multiple

failed attempts" or "OTP expired."

72

 Consistency of page navigation: The transitions between login, home page,

sign up page, password change, etc.

 Help and Support for error and recovery: A customer support, a resend OTP,

password reset option and a password modal that helps users know how to

create stronger passwords.

 Admin feedback mechanisms: Email alerts generated upon suspicious activity

or lockouts and customer support emails.

 Visibility of system status: Messages that give feedback upon lockout or

verification success.

 User control and freedom: Verified role-based access control for user-specific

views.

 Minimalist Design: The dashboard and authentication pages were designed for

clarity and responsiveness.

Overall, heuristic evaluations confirmed that security controls maintained usability and

provided users with clear, actionable feedback during authentication.

4.4.4: Dashboard Analytics: A custom dashboard analytics page

(security_dashboard) was created using Chart.js and integrated into the Django

“dashboard” app to visualize testing results. The dashboard tracked:

 Failed Login Heatmap: By IP and geolocation (based on request metadata and

geoip2).

 Lockout Frequency: Number of users locked out by day, hour, and IP.

73

 CAPTCHA Fail Rate: Visualized failure trends across simulation runs.

 OTP Usage Analytics: Displayed how often OTPs were generated, expired, and

successfully used.

These insights supported both the testing phase and the evaluation of system

thresholds for brute-force attacks, rate limiting, and account lockouts. They also provide

ongoing visibility into misuse patterns and system health, enabling administrators to

proactively monitor threats and adjust security policies.

4.4.5: Penetration Testing Approach and Tool Justification:

Brute-force attack simulations were conducted using custom Python scripts to emulate

repeated unauthorized login attempts. These tests evaluated account lockouts, rate

limiting, CAPTCHA, and OTP validation. Although industry tools like Hydra and Burp

Suite are standard in penetration testing, custom scripts were used here for better

integration with the system’s architecture and analytics. Future work may incorporate

these tools to enhance testing realism and depth.

4.4.6: Ethical Considerations:

 Privacy and Data Protection (Europe Commission, 2013):

o Test data was anonymized, and

o Real user data was never used in testing environments.

74

o Test logs were securely stored and deleted after analysis, in compliance

with GDPR guidelines.

 User Consent (Europe Commission, 2013):

o No real users participated in the testing phase;

o All usability assessments were based on system logs and test accounts.

4.5: Security vs. Usability Trade-offs

Balancing security with usability is crucial to avoid frustrating users and encouraging

insecure workarounds (Farrukh, 2013). While strict security controls (e.g., frequent

lockouts, mandatory 2FA) are effective in defending against attacks, they can hinder the

user experience. The system addresses this balance by:

 Progressive Lockouts:

An exponential backoff algorithm is used to increase lockout durations (from 15

minutes to 24 hours after 5 failed attempts). This approach thwarts brute-forcing while

allowing legitimate users to recover through self-service unlocks via verified email and

admin override capabilities with MFA confirmation.

75

 Contextual Feedback:

The system provides non-revealing error messages to avoid enumeration

attacks, with clear guidance on post-lockout recovery procedures. Real-time password

strength feedback is integrated, helping users create stronger passwords.

Chapter 5: Discussion and Evaluation of Results

This chapter presents the results of testing and evaluating the Django-based

authentication system developed in this study. It discusses the effectiveness of

implemented security measures, outcomes of brute-force simulations, insights from

dashboard analytics, and feedback on usability. The analysis is aligned with the

research objectives and highlights how the system addresses the identified security

gaps (Wang, et al., 2021), (Tariq, et al., 2023).

To support the explanations, relevant screenshots and code snippets of the Django

application, and the GitHub URL; are included in the appendices.

5.1: Data Presentation and Analysis

This section presents a detailed breakdown of the results from the testing, including

both quantitative and qualitative analysis.

5.1.1: Brute-force Protection: Analysis of the lockout simulation showed

the system successfully enforced progressive rate-limiting (Socol, N.D.). After a

76

defined number of failed attempts, the account was locked and remained so for

the expected duration. Admin alerts were promptly triggered and included relevant

IP and timestamp data.

 Metric: Max 5 attempts allowed within 60 seconds.

 Result: Lockout triggered and logged at 6th attempt.

 Admin Alert: Email notifications that included attack metadata was sent after

threshold exceeded.

5.1.2: CAPTCHA Validation: Google reCAPTCHA effectively blocked

automated login scripts after multiple incorrect credential attempts. The

CAPTCHA challenge was enforced after 3 failed attempts, and only valid

CAPTCHA tokens allowed login continuation (OWASP, 2025).

 Metric: CAPTCHA triggered on 3rd failure.

 Dashboard: Logged CAPTCHA fails by timestamp.

5.1.3: OTP Authentication: Time-based OTP (TOTP) 2FA was tested

using both valid and expired tokens, as recommended by the NIST guidelines

(NIST, 2025). Expired tokens generated user-facing error messages, and new

tokens were required to proceed.

 Metric: 10-minute expiry window.

77

 Success Rate: 90% success rate with valid user input.

 Error Handling: Expired or reused tokens blocked correctly.

5.1.4: Email Verification Authentication: Time-based email verification

token was successfully received in the user’s email. The system was tested using

both valid and expired tokens. Expired tokens generated user-facing error

messages, and new tokens were required to proceed (Turner & Housley, 2008).

 Metric: 10-minute expiry window.

 Success Rate: 90% success rate with valid user input.

 Error Handling: Email was received and expired or reused tokens were blocked

correctly.

5.1.5: Password Expiry: Password expiry was simulated by altering the

timestamp on a testuser account. Upon login, the user was redirected to the

password change page, and login was not allowed until the password was

updated (OWASP, 2025).

 Policy: 90-day expiration.

 Result: Expired accounts forced password reset before access.

78

5.1.6: IP Lockout and Geolocation: Repeated login attempts from a single

IP were logged and rate-limited. The IP, time, and location were visualized on the

admin dashboard using GeoLite2 data and stored in the system log (GeoLite2,

2023).

 Metric: Lockout enforced after 10 failures/IP.

 Geo Accuracy: IP region in logs was unknown.

 Admin Interface: Heatmaps and charts updated in real-time.

5.1.7: Admin and User Feedback: All messages (errors, warnings,

success messages) were reviewed for clarity and actionability. Admin alerts

contained actionable context and were triggered instantly upon major events

(Nielsen & Molich, 1990).

 Clarity Score (internal rating): High

 Message Types Evaluated: Lockout alerts, OTP fail, expired password, email

not verified.

 Admin Alerts: Immediate, relevant, geolocated.

79

5.2: Evaluation Benchmarks and Metrics

To objectively assess the effectiveness and robustness of the prototype, evaluation

criteria were established based on (OWASP, 2021), STRIDE, and industry best

practices. These benchmarks covered core areas including resistance to attack,

usability, and performance under load.

5.2.1: Usability Evaluations:

The system was evaluated using a heuristic checklist based on Nielsen’s

usability principles (Nielsen & Molich, 1990), (Lodhi, 2010):

Usability Principle Observation

Visibility of System

Status

Success/failure messages are clearly displayed

User Control and

Freedom

Users can resend OTP during login and

reset passwords

Error Prevention CAPTCHA prevents bot errors; clear error messages

reduce confusion

CAPTCHA and OTP

Validation

CAPTCHA and OTP were successfully validated

Page Rendering Page rendering is smooth

Flexibility and Efficiency System adapts to users’ security needs

Minimalist Design Clean interface with minimal distractions

Table 6: Usability Evaluations

80

5.2.2: Security Metrics:

Metric Result

Lockout success 95% attack prevention rate

CAPTCHA block rate 100% after threshold is reached

OTP and email token expiration Enforced correctly as per design

Access Control Unauthorised users are successfully

prohibited from accessing pages

5.2.3: System Performance:

Performance Indicator Observations

Brute-force/distributed attacks Efficiently mitigated

Lockouts/log handling No observable delays

Dashboard responsiveness Near real-time updates observed

Table 7: System Performance

5.3: Summary and Interpretation of the Results

The Django-based authentication system effectively addressed brute-force attacks

using a layered security architecture that included: rate limiting, CAPTCHA, OTP-based

2FA, and time-based email verification (Wang, et al., 2021). Controlled simulations and

81

custom Python scripts consistently demonstrated successful lockouts, correct

enforcement of OTP/email expiration, and resilience against distributed brute-force

attacks, achieving a 95% attack mitigation rate.

Google reCAPTCHA v2 proved highly effective as a first-line defence, preventing bot

login attempts, thus aligning with findings by (Tariq, et al., 2023). However, its

effectiveness was maximized when combined with additional safeguards such as

progressive lockouts and OTP authentication.

Usability evaluations confirmed that optional OTP, clear user messages, and a clean

dashboard interface preserved accessibility and user-friendliness (Lodhi, 2010). The

dashboard further enhanced situational awareness through real-time visualizations of

login events and IP lockouts.

Despite the system’s success, limitations such as the absence of AI-driven threat

detection (Nzeako & Shittu, 2024), formal usability testing, and scalability evaluation

were identified. These limitations offer avenues for future enhancements.

Overall, the prototype fulfilled the key implementation goals of the study, balancing

robust security with practical usability for small to mid-sized deployments.

5.4: Effectiveness of Addressing Research Gaps

The study’s research gaps were evaluated to determine how well the proposed system

addressed them. Key gaps included the effectiveness of multi-layered defences,

usability versus security trade-offs, and scalability challenges. The table below outlines

each research gap alongside a justification of how it was addressed.

82

Research Gap Addressed? Justification / Explanation

Multi-layered defence strategy

effectiveness

Yes Combined and integrated

CAPTCHA, OTP, rate limiting, and

lockout

Usability vs. Security trade-off Yes Made 2FA optional for admin and

enforced lockouts progressively

Resource constraints (small

organisations)

Yes Built using open-source tools,

simple configuration

Real-time attack detection and

monitoring

Partially Dashboard helps, but no Machine

Learning-based threat detection

Scalability Partially Design supports scalability, but not

yet tested on large-scale

deployments

Blockchain/Decentralized

Authentication

Not yet Not implemented; proposed for

future work

Table 8: Addressed Research Gaps

5.5: Comparison with Existing Solutions

To evaluate the effectiveness of the developed system, it is essential to benchmark it

against existing authentication frameworks reviewed in Chapter 2. Notably, commercial

platforms such as: Google Identity (Google cloud, 2025), (Auth0, 2025), etc; provide

83

multi-factor authentication (MFA), bot mitigation, device fingerprinting, and adaptive risk

assessment. Under fee subscription, these platforms also offer: extensive infrastructure,

machine learning-based anomaly detection, and large-scale threat intelligence;

capabilities beyond the scope of this dissertation’s system (Zhang, et al., 2025).

Compared to these mature platforms, the Django-based prototype performs reasonably

well in offering:

 Basic brute-force resistance (through CAPTCHA, rate-limiting, and lockouts),

 2FA via Time-based OTP,

 Real-time dashboard analytics (a unique feature not often available in open-

source Django solutions),

 Time-based email verification during signup,

 Device fingerprinting and logging.

 Low-cost alternative for SMEs

However, it lacks critical features found in industry solutions, such as:

 Context-aware or behavioural authentication (e.g., location-based anomaly

detection),

 Encrypted session token rotation and device trust management,

 Comprehensive identity lifecycle management (e.g., provisioning, de-

provisioning, audit trails).

 Password generator that helps users generate stronger passwords,

84



Compared to academic prototypes (e.g., AI-powered intrusion detection frameworks

discussed in chapter 2), this project leans more toward usability and implementation

practicality rather than experimental sophistication. For instance, it does not explore

deep learning for anomaly detection or federated identity protocols such as SAML or

OpenID Connect.

Nevertheless, the project demonstrates an important middle-ground: how Django, a

mainstream web framework, can be enhanced using widely available open-source

libraries to prevent brute force attacks and also implement OWASP-compliant

defences; making it highly replicable for Small Medium Enterprises (SMEs) or individual

developers who cannot afford enterprise-grade IAM solutions.

5.6: Challenges, Limitations and Proposed Solutions

Several challenges and limitations were encountered during this study. The following

table outlines each limitation along with proposed solutions.

Challenge /

Limitation

Description Proposed Solution

hCAPTCHA

Implementation

Failure

hCAPTCHA was initially

considered but replaced due to

persistent validation errors that

consumed significant development

Google reCAPTCHA v2

was adopted instead for its

reliability and smoother

integration.

85

time.

CAPTCHA v2

Vulnerability

Artificial Intelligence bots may

bypass CAPTCHA v2

Upgrade to reCAPTCHA v3

and integrate behavioural

analytics

Third-Party Service

Dependency

Reliance on Google reCAPTCHA

may cause issues if service is

unavailable

Implement fallback

mechanisms and local bot

detection strategies

Static Thresholds Fixed lockout attempts are

vulnerable to distributed slow

brute-force

Introduce adaptive

throttling and user/IP

behaviour analytics

Limited Usability

Testing

Limited usability testing even

though heuristic evaluation was

performed.

Conduct formal usability

studies and accessibility

audits.

Lack of Intelligence

in Dashboard

Dashboard does not include AI-

based threat scoring or alerts

Enhance with pattern

recognition, ML models,

and automated alerts

No End-to-End

Encryption Testing

Email and OTP flows assumed

secure without validation.

Perform transport-layer

security (TLS) penetration

tests and audits.

Controlled

Simulations

Simulations lacked real-world Use threat intelligence

feeds and chaos

86

Limitation traffic diversity engineering principles

Geolocation

Inaccuracies

IP-based geolocation had error

rates.

Supplement with HTML5

Geolocation API and device

fingerprinting

2FA Optionality Optional 2FA limits universal

protection

Enforce 2FA for admins

and apply risk-based

authentication

Scalability

Constraints

Local-only testing may miss

production performance issues.

Use load testing tools,

implement Redis caching

and asynchronous task

queues.

Password

Generator Absence

Users created weak passwords

without help

Add client-side password

generator.

Usability and

Accessibility

Constraints

Elderly and accessibility needs are

not fully implemented and tested.

Add audio CAPTCHA,

session recovery options,

and WCAG-compliant

design.

Real-World Attack

Diversity

Focused only on common brute-

force, not advanced attacks

Expand penetration testing

with evolving real-world

datasets.

Table 9: Challenges, Limitations and Proposed Solutions

87

Chapter 6: Conclusion and Recommendations

This chapter concludes the study by summarizing the key findings, highlighting the

contributions of the project, and offering recommendations for future improvements. The

chapter also reflects on the research objectives and the extent to which they were

achieved, while acknowledging the limitations and proposing directions for further work

in the domain of secure authentication systems.

6.1: Summary of Key Findings

The project set out to design, implement, and evaluate a Django-based authentication

system that enhances protection against brute-force attacks using a combination of

layered security measures. The major findings from the simulation tests and system

evaluation are as follows:

 Brute-force Mitigation: The integration of progressive rate limiting, account

lockouts, CAPTCHA validation, and OTP-based two-factor authentication

effectively thwarted automated login attempts, as confirmed by controlled brute-

force simulations.

 Security Outcomes: The system demonstrated a high attack mitigation rate,

with lockout mechanisms and CAPTCHA challenges reducing unauthorized

access attempts by over 95%. OTP tokens with expiration provided additional

resilience against token replay and session hijacking.

88

 User Feedback and Usability: Despite the inclusion of multiple security layers,

the system maintained a good balance with usability. Optional OTP and clear

feedback messages reduced user friction while preserving security.

 Real-Time Monitoring: The custom dashboard enabled administrators to

visualize authentication trends, failed logins, and IP-based lockouts, supporting

timely incident response.

 Compliance and Best Practices: The design aligned with OWASP’s top ten

recommendations (OWASP, 2021), STRIDE threat modelling (Department for

Science, Innovation & Technology, 2024), and GDPR data handling (National

Cyber Security Centre, 2018) requirements.

 Brute-force mitigation: Rate limiting and lockout mechanisms effectively

blocked unauthorized repeated login attempts.

 CAPTCHA and OTP integration: Google reCAPTCHA and TOTP-based 2FA

significantly reduced automated and unauthorized access attempts without

overwhelming legitimate users.

 Dashboard analytics: Real-time data visualization (e.g., failed login heatmaps,

CAPTCHA failure logs) provided valuable administrative insight for monitoring

and incident response.

 Usability: The optional 2FA, informative feedback messages, and intuitive

interface ensured the system remained user-friendly despite enhanced security.

6.2: Alignment with Research Questions

89

This section critically evaluates the extent to which the developed system and findings

address the research questions outlined in Chapter 1.

Research Question Addressed? Evidence/Justification

1. What are the most

2. effective methods to

prevent or mitigate

brute force attacks in

Python-based login

systems?

Yes The Django login system effectively

implemented multiple mitigation

techniques: account lockout after failed

attempts, rate limiting using django-

ratelimit, CAPTCHA (Google

reCAPTCHA), OTP-based 2FA, logging,

device fingerprinting, email verification,

admin alerts, and geolocation tracking of

suspicious activity. These methods were

evaluated during simulated brute-force

attack tests.

Simulations demonstrated a high attack

mitigation rate (95%).

3. What are the common

vulnerabilities in

Python-based login

systems that make

them susceptible to

brute force attacks?

Yes Chapter 2 (Literature Review) identifies

vulnerabilities such as lack of rate limiting,

absence of CAPTCHA, predictable login

endpoints, and no 2FA. Chapter 3 shows

how these issues were mitigated through

specific implementations in the Django

90

system.

4. What are the

advantages and

limitations of current

brute force prevention

mechanisms

implemented in

Python-based

systems?

Yes Chapter 5 (Discussion) evaluates each

security feature: e.g., CAPTCHA

effectively blocks bots but may impact

usability; account lockout helps prevent

abuse but can be exploited in denial-of-

service scenarios. OTP adds strong

protection but relies on time-sensitive

codes and user device accessibility.

5. How can Python

libraries and built-in

features be utilized to

enhance the security of

login systems against

brute force attacks?

Yes The prototype used Python/Django tools

and libraries: django-ratelimit for rate

limiting, django-two-factor-auth for OTP,

Google reCAPTCHA integration, Django's

session management and email

verification, and cache framework for

lockout tracking. Chapter 3 and 4 details

this.

6. How can defence

mechanisms be

integrated into Python-

based login systems to

mitigate brute force

Yes Usability was addressed by making OTP

optional (for demo), allowing limited

retries before lockout, and customizing

user messages for errors and CAPTCHA

failure. Chapter 4 and Chapter 5 include

91

attacks without

negatively affecting

user experience?

heuristic analysis of usability vs. security

trade-offs.

Table 10: Research Questions Alignment

6.3: Achievement of Research Objectives

The system successfully addressed the primary research objectives from chapter 1.

Below is a table mapping the research aims and objectives to Implementation and

Outcomes:

Research Aims / Objectives Achieved Evidence / Justification

1. To assess the

effectiveness of current

methods used to prevent

brute force attacks in

Python-based login

systems.

Yes The Literature Review (Chapter 2) and

Evaluation (Chapter 5) analysed and

implemented various techniques including

CAPTCHA, OTP, account lockouts, rate

limiting, and logging.

Effectiveness was tested using brute-force

simulation tools with results showing

mitigation success.

2. To identify the

limitations of existing

solutions and explore

Yes Limitations such as user friction

(CAPTCHA and OTP), lockout abuse risks,

and scalability concerns were critically

92

potential areas of

improvement.

analysed in Chapter 5. Chapter 2 also

outlines gaps in common Django apps that

lack layered defence.

Improvements such as progressive

lockouts and admin monitoring

dashboards were introduced and

implemented into the Django login system.

3. To develop a Python-

based solution that can

be used by small

organizations to

enhance authentication

security.

Yes A lightweight Django-based secure login

system was developed with modular

security features.

The system was designed for easy

deployment by small organizations with

minimal overhead.

4. To evaluate the usability

and effectiveness of the

proposed solution,

ensuring that it provides

a balance between

robust security and user

convenience.

Yes Usability vs. security trade-offs were

addressed by making 2FA optional,

offering informative error messages, using

Google reCAPTCHA for better UX, and

including optional features.

Chapter 5 includes a heuristic usability

evaluation.

5. To propose optimal Yes The solution uses open-source libraries,

93

solutions for

organizations with

limited resources.

minimal setup, and no premium third-party

dependencies.

Chapter 5 and 6 outlines how such

systems can be customized or scaled

depending on an organization’s capacity.

Table 11: Achievement of Research Objectives

6.4: Key Contributions to the Field

This project offers the following key contributions:

 A modular, open-source security prototype using Django that integrates multi-

layered defence mechanisms against brute-force and automated attacks.

 A structured evaluation methodology combining qualitative and quantitative

analysis, including simulated attacks, log review, and usability heuristics.

 A custom admin dashboard for real-time threat visibility and authentication

metrics.

 Practical demonstration of how layered security can be achieved without

compromising usability in authentication systems.

 Evidence-based insights into balancing security and usability in authentication

workflows.

94

6.5: Recommendations

Although the system achieved its intended goals, several areas for improvement and

extension are considered:

 SMS OTP fallback: Adding SMS-based OTP would enhance accessibility,

especially in cases where authenticator apps are unavailable (Mayorga & Yoo,

2025).

 Scalability Testing: Conduct load testing on distributed environments (e.g.,

AWS or Kubernetes) to assess system resilience under large-scale usage

(Özeren , 2024).

 Machine Learning and Artificial Intelligence for Anomaly Detection:

Integrate anomaly detection models to dynamically identify suspicious login

patterns beyond fixed thresholds (Zhang, et al., 2025)..

 User Feedback Integration and User experience (UX) testing: Conduct live

user testing sessions to gain broader insights into usability issues and improve

the user experience design (Downey & Laskowski,, 1996).

 Blockchain-based Authentication: Explore decentralized authentication

models to reduce reliance on central authorities and improve privacy (Deep, et

al., 2019).

 Mobile Integration: Extend the system with mobile support for OTP delivery and

biometric authentication options (Albesher, et al., 2024) (Farik, et al., 2016).

95

 Continuous Security Updates: Establish an automated mechanism for updating

third-party libraries (e.g., reCAPTCHA, OTP libraries) to mitigate dependency

risks (Zeng, et al., 2024).

 Enhance and test accessibility features: By including accessibility features

such as audio CAPTCHAs, biometric authentication (e.g., fingerprint or facial

recognition), etc; so as to accommodate elderly users and individuals with

disabilities (Renaud , et al., 2018). As well as conducting usability tests with

diverse user groups to ensure inclusivity and compliance with accessibility

standards (Accessibility Guidelines Working Group (AG WG) , 2025).

 Integrate machine learning for adaptive rate limiting, enabling the system to

distinguish between legitimate and malicious login attempts more accurately and

reduce false positives (Zhang, et al., 2025).

 User Awareness and Education: Develop training modules on authentication

best practices for end-users (Aldawood & Skinner, 2019).

 Biometric Integration: Implement facial recognition and fingerprint

authentication for additional security layers (De Abiega-L'Eglisse, et al., 2022)

(Newman, 2009).

 Advanced Penetration and Attack Simulation: While this project focused on

brute-force prevention using controlled simulations, these lacked real-world traffic

variability. Future work should incorporate red team exercises (Özeren , 2024)

and tools like Hydra and Burp Suite to simulate more diverse, unpredictable

attack patterns and enhance testing realism.

96

6.6: Future Work

 AI Anomaly Detection: Machine learning integration to dynamically adjust

security controls based on risk scores (Nzeako & Shittu, 2024).

 Passwordless Auth: Transition to WebAuthn to eliminate password-related risks

(Yusop, et al., 2025).

 Biometric Integration: Use of facial recognition or fingerprints for high-security

roles (Newman, 2009).

 Decentralized Identity or Blockchain Authentication: Blockchain-based

authentication to mitigate centralized credential storage risks (Rivera, et al.,

2024).

 AI-based Adaptive Authentication: Using anomaly detection to flag suspicious

behaviour (Zhang, et al., 2025).

6.7: Conclusion

This research set out to design, implement, and evaluate a secure authentication

system aimed at mitigating brute force attacks in Python-based environments, with a

specific focus on the Django web framework. Through a comprehensive literature

review, technical implementation, controlled attack simulations, and usability

evaluations, the study demonstrates that a multi-layered defence model incorporating:

rate limiting, CAPTCHA, OTP-based 2FA, account lockouts, and monitoring; can

significantly enhance authentication security.

97

The prototype system successfully blocked over 95% of simulated brute force attacks

and provided real-time threat visibility via a custom admin dashboard. These outcomes

validate the effectiveness of combining traditional and contemporary security controls to

counter brute force attacks. Designed with small to medium-sized organizations in mind

(Deschoolmeester, et al., 2013), the system offers a practical, low-cost, open-source

solution that can be deployed with minimal technical overhead.

Importantly, the research highlights the value of balancing robust security with user

experience. Features such as optional OTP for standard users, actionable feedback

messages, and adaptive CAPTCHA placement helped reduce user friction without

weakening defences. However, limitations such as: reliance on third-party services, the

absence of AI-driven threat detection, and the need for continuous updates; underscore

areas for future improvement.

This project contributes to both the theoretical and practical advancement of

authentication security by showing how Python/Django-based tools and libraries can be

used to construct an OWASP-compliant defence framework. It also lays the groundwork

for future enhancements, including machine learning-based anomaly detection,

biometric authentication, and decentralized identity systems.

In conclusion, while no system is entirely immune to advanced threats (Abdulkader , et

al., 2015), the proposed architecture significantly raises the barrier for brute force

attacks. It presents a replicable model for secure, user-aware authentication systems

and offers a strong foundation for ongoing research and innovation in cybersecurity.

98

References

Abdulkader , S., Atia, A. & Mostafa , M.-S., 2015. Authentication systems: principles and threats.

Computer and Information Science, 8(3).

Accessibility Guidelines Working Group (AG WG) , 2025. Accessible Authentication (Minimum) (Level AA).

[Online]

Available at: https://www.w3.org/WAI/WCAG22/Understanding/accessible-authentication-minimum

[Accessed 30 April 2025].

Agghey , A. Z. et al., 2021. Detection of Username Enumeration Attack on SSH Protocol: Machine

Learning Approach. Symmentry, 13(11), p. 2192.

Albesher, A. S., Alkhaldi, A. & Aljughaiman, A., 2024. Toward secure mobile applications through proper

authentication mechanisms. PLoS ONE, 5 December.19(12).

Aldawood, H. & Skinner, G., 2019. Reviewing Cyber Security Social Engineering Training and Awareness

Programs—Pitfalls and Ongoing Issues. Future Internet, 11(3), p. 73.

Anon, N.D.. What is rate limiting and how does it work?. [Online]

Available at: https://www.radware.com/cyberpedia/bot-management/rate-limiting/

[Accessed 30 April 2025].

Aslan, Ö., Aktuğ, S. S., Ozkan, M. & Yılmaz, A. A., 2023. A Comprehensive Review of Cyber Security

Vulnerabilities, Threats, Attacks, and Solutions. Electronics, 12(6), pp. 1-42.

Auth0, 2025. Auth0 docs. [Online]

Available at: https://auth0.com/docs/articles

[Accessed 30 April 2025].

Ba, M. H. N., Bennett, J., Gallagher, M. & Bhunia, S., 2021. A Case Study of Credential Stuffing Attack:

Canva Data Breach. Las Vegas, NV, USA,, IEEE.

Bhatia, M., 2018. Your Guide to Qualitative and Quantitative Data Analysis Methods. [Online]

Available at: https://humansofdata.atlan.com/2018/09/qualitative-quantitative-data-analysis-methods/

[Accessed 21 August 2023].

Burrows, M., Abadi, M. & Needham, R. M., 1989. A logic of authentication. Proceedings of the Royal

Society of London..

CAPEC, 2018. CAPEC-112: Brute Force. [Online]

Available at: https://capec.mitre.org/data/definitions/112.html

[Accessed 30 March 2025].

Certus Cybersecurity, 2023. Rate Limiting 101: Protecting Your Network from Cyber Attacks. [Online]

Available at: https://www.certuscyber.com/insights/rate-limiting-protect-network/

[Accessed 30 April 2025].

99

Cleary, B., 2024. brute force attack. [Online]

Available at: https://us.norton.com/blog/emerging-threats/brute-force-attack

[Accessed 30 March 2025].

Contrast Security, 2021. brute force attack. [Online]

Available at: https://www.contrastsecurity.com/glossary/brute-force-attack

[Accessed 30 March 2025].

Cremer , F. et al., 2022. Cyber risk and cybersecurity: a systematic review of data availability. Geneva Pap

Risk Insur Issues Pract, 17 February, 47(3), pp. 698-736.

Creswell, J. W., 2017. Research design: Qualitative, quantitative, and mixed methods approaches. 3rd ed.

Lincoln: Sage Publications.

Crudu, V. & Team, M. R., 2024. Best Practices for Django User Authentication. [Online]

Available at: https://moldstud.com/articles/p-best-practices-for-django-user-authentication

[Accessed 30 April 2025].

CWE Content Team, 2021. CWE VIEW: Weaknesses in OWASP Top Ten (2021). [Online]

Available at: https://cwe.mitre.org/data/definitions/1344.html

[Accessed 15 December 2022].

CyBOK, 2021. Knowledgebase1_1. [Online]

Available at: https://www.cybok.org/knowledgebase1_1/

[Accessed 27 March 2022].

Das, A., Bonneau, J., Caesar, M. & Borisov, N., 2014. The Tangled Web of Password Reuse. [Online]

Available at:

https://www.researchgate.net/publication/269197028_The_Tangled_Web_of_Password_Reuse

[Accessed 30 April 2025].

Dauzon, S., Bendoraitis, A. & Ravindran, A., 2016. Django: Web Develoment with Python. Mumbai: Packt

Publishing Ltd.

De Abiega-L'Eglisse, A. F. et al., 2022. A New Fuzzy Vault based Biometric System robust to Brute-Force

Attack. Journal of Computacion y Sistemas.

Deep, G. et al., 2019. Authentication Protocol for Cloud Databases Using Blockchain Mechanism. Sensors,

19(20), p. 4444.

Department for Science, Innovation & Technology, 2024. Conducting a STRIDE-based threat analysis.

[Online]

Available at: https://www.gov.uk/government/publications/secure-connected-places-playbook-

documents/conducting-a-stride-based-threat-analysis

[Accessed 30 April 2025].

Deschoolmeester, D., Landeghem, H. v. & Devos, J., 2013. Information Systems for Small and Medium-

sized Enterprises: State of Art of IS Research in SMEs. New York: Springer Berlin Heidelberg.

100

Devndra, G., 2020. Comparative study on Python web frameworks: Flask and Django. [Online]

Available at: https://www.theseus.fi/handle/10024/339796

[Accessed 30 April 2025].

Django Software Foundation, 2015. Documentation. [Online]

Available at: https://docs.djangoproject.com/en/4.1/

[Accessed 15 December 2022].

Django Software Foundation, 2023. Security in Django. [Online]

Available at: https://docs.djangoproject.com/en/5.2/topics/security/

[Accessed 30 April 2025].

Django Software Foundation, 2023. Why Django?. [Online]

Available at: https://www.djangoproject.com/start/overview/

[Accessed 30 April 2025].

Django Software Foundation, 2025. Logging. [Online]

Available at: https://docs.djangoproject.com/en/5.2/topics/logging/

[Accessed 30 April 2025].

Django Software Foundation, 2025. Sending email. [Online]

Available at: https://docs.djangoproject.com/en/5.2/topics/email/

[Accessed 30 April 2025].

Django Software Foundation, 2025. Using Sessions. [Online]

Available at: https://docs.djangoproject.com/fr/5.2/topics/http/sessions/

[Accessed 01 May 2025].

Django-Axes, N.D.. Configuration. [Online]

Available at: https://django-axes.readthedocs.io/en/latest/4_configuration.html

[Accessed 30 April 2025].

Django, N.D.. Django 1.7.11 documentation. [Online]

Available at: https://django.readthedocs.io/en/1.7.x/index.html

[Accessed 12 December 2022].

Django, N.D.. Using the Django authentication system. [Online]

Available at: https://docs.djangoproject.com/en/5.2/topics/auth/default/

[Accessed 30 April 2025].

Downey, L. L. & Laskowski,, S. J., 1996. Usability Engineering: IndustryGovernment Collaboration for

System Effectiveness and Efficiency. [Online]

Available at: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.govinfo.gov/content/pkg/GOVPUB-C13-

c6d53b6e12963a6af03c8b21bce1a8c1/pdf/GOVPUB-C13-c6d53b6e12963a6af03c8b21bce1a8c1.pdf

[Accessed 30 April 2025].

Europe Commission, 2013. Ethics for Researchers. Luxembourg: Europe Union.

101

Farik, M., Lal, N. A. & Prasad, S., 2016. A Review Of Authentication Methods. INTERNATIONAL JOURNAL

OF SCIENTIFIC & TECHNOLOGY RESEARCH, 5(11), pp. 246-249.

Farrukh, S., 2013. Tradeoffs between Usability and Security. International Journal of Engineering and

Technology, 5(4), pp. 434-437.

Fluid attacks: help center, 2024. Concurrent sessions - Python. [Online]

Available at: https://help.fluidattacks.com/portal/en/kb/articles/criteria-fixes-python-062

[Accessed 01 April 2025].

GeoLite2, 2023. GeoLite Databases and Web Services. [Online]

Available at: https://dev.maxmind.com/geoip/geoip2/geolite2/

[Accessed 01 May 2025].

Gollmann, D., 2021. Authentication, Authorisation & Accountability Knowledge Area Version 1.0.2.

[Online]

Available at: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.cybok.org/media/downloads/Authenticati

on_Authorisation_Accountability_v1.0.2.pdf

[Accessed 4 December 2024].

Golofit, K., 2007. Click Passwords Under Investigation. European Symposium on Research in Computer

Security, 15(19), pp. 343-358.

Google cloud, 2025. Identity Platform. [Online]

Available at: https://cloud.google.com/security/products/identity-platform

[Accessed 30 April 2025].

Google, 2025. recaptcha how it works. [Online]

Available at: https://cloud.google.com/security/products/recaptcha#how-it-works

[Accessed 30 April 2025].

Grimes, R. A., 2020. Brute-Force Attacks. In: Hacking Multifactor Authentication. s.l.:s.n., p. Chapter 14.

Grunwaldt, J.-M., 2019. A Comparison of Modern Backend Frameworks Protections against Common

Web Vulnerabilities. [Online]

Available at: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.cs.tufts.edu/comp/116/archive/fall2019/jg

runwaldt.pdf

[Accessed 30 April 2025].

Hamza, A. & Al-Janabi, R. J. s., 2024. Detecting Brute Force Attacks Using Machine Learning. BIO Web of

Conferences, 97(3).

Herley, C. & Florencio, D., 2008. Protecting Financial Institutions from Brute-Force Attacks. In: IFIP – The

International Federation for Information Processing. Boston, MA: Springer, pp. 681-685.

Hevner, A. R., March, S. . T., Ram, S. & Park, J., 2004. Design Science in Information Systems Research.

MIS Quarterly, 28(1), pp. 75-105.

102

Idhom, M., Wahanani, H. E. & Fauzi, A., 2020. Network Security System on Multiple Servers Against Brute

Force Attacks. Surabaya, Indonesia, IEEE, pp. 258-262.

Idris, N., Foozy, C. F. M. & Shamala, P., 2020. A Generic Review of Web Technology: DJango and Flask.

International Journal of Advanced Computing Science and Engineering, 2(1), pp. 34-40.

IndiaFreeNotes, 2023. Influence of Information Systems in Transforming Businesses. [Online]

Available at: https://indiafreenotes.com/influence-of-information-systems-in-transforming-

businesses/#:~:text=Information%20systems%20have%20transformed%20businesses,increasing%20acce

ss%20to%20new%20markets.

[Accessed 30 July 2023].

Information Commissioner's Office, 2024. Brute force attacks. [Online]

Available at: https://ico.org.uk/about-the-ico/research-reports-impact-and-evaluation/research-and-

reports/learning-from-the-mistakes-of-others-a-retrospective-review/brute-force-attacks/

[Accessed 3 December 2024].

Jimmy, F., 2024. Cybersecurity Threats and Vulnerabilities in Online Banking Systems. International

Journal of Scientific Research and Management (IJSRM), 12(10), pp. 1631-1646.

Khan, R., McLaughlin, K., Laverty, D. & Sezer, S., 2017. STRIDE-based threat modeling for cyber-physical

systems. Turin, Italy, IEEE.

Kirlappos , I. & Sasse , M. A., 2014. What Usable Security Really Means: Trusting and Engaging Users.

London, UK, University College London, pp. 69-78.

Lodhi, A., 2010. Usability Heuristics as an assessment parameter: For performing Usability Testing. San

Juan, USA, IEEE.

Lu, B. et al., 2018. A Measurement Study of Authentication Rate-Limiting Mechanisms of Modern

Websites. ACSAC San Juan, PR, USA, Volume 00, pp. 3-7.

Lutz, M., 2013. Learning Python. 4th ed. s.l.:O'Reilly Media.

Macsinoiu, V. E., 2024. Unveiling User Enumeration Attacks: Methods, Impacts and Mitigation Strategies.

International Journal of Information Security and Cybercrime (IJISC), 26(2), pp. 59-64.

Makai, M., N.D.. Django Extensions, Plug-ins and Related Libraries. [Online]

Available at: https://www.fullstackpython.com/django-extensions-plug-ins-related-libraries.html

[Accessed 19 December 2022].

Mayorga, O. E. A. & Yoo, S. G., 2025. One Time Password (OTP) Solution for Two Factor Authentication: A

Practical Case Study. Journal of Computer Science, 21(5), pp. 1100-1112.

Melé, A., 2020. Django 3 by example. 3rd ed. UK: Packt Publishing Ltd.

Mohammed, A. H. Y. & Dziyauddin, R. A., 2023. Current Multi-factor of Authentication: Approaches,

Requirements, Attacks and Challenges. International Journal of Advanced Computer Science and

Applications, 14(1), pp. 166-178.

103

Moradi, M. & Keyvanpour, M., 2015. CAPTCHA and its Alternatives: A Review. Security and ommunication

Networks, Volume 8, pp. 2135-2156.

Moyo, S. & Mnkandla, E., 2019. A Metasynthesis of Solo Software Development Methodologies.

Vanderbijlpark, South Africa, IEEE, pp. 1-8.

Najafabadi, M. M., Calvert, C., Kemp, C. & Khoshgoftaar, T. M., 2015. Detection of SSH Brute Force

Attacks Using Aggregated Netflow Data. s.l., s.n., pp. 283-288.

National Cyber Security Centre, 2018. GDPR security outcomes. [Online]

Available at: https://www.ncsc.gov.uk/guidance/gdpr-security-outcomes

[Accessed 20 July 2022].

Newman, R., 2009. Security and Access Control Using Biometric Technologies. Canada: Cengage Learning.

Nielsen, J. & Molich, R., 1990. Heuristic Evaluation of User Interfaces. Denmark, s.n.

Nikiforakis, N. et al., 2013. Cookieless Monster: Exploring the Ecosystem of Web-Based Device

Fingerprinting. California, USA, IEEE.

NIST, 2025. NIST Special Publication 800-63B. [Online]

Available at: https://pages.nist.gov/800-63-3/sp800-63b.html

[Accessed 30 April 2025].

Nithya, S. & Rekha, B., 2023. Insights on Data Security Schemes and Authentication Adopted in

Safeguarding Social Network. International Journal of Advanced Computer Science and Applications

(IJACSA), 14(4).

Norman, K. L. & Kirakowski, J., 2018. The Wiley Handbook of Human Computer Interaction. 1st ed. West

Sussex, UK: John Wiley & Sons Ltd.

Nurhaida , I. & Bisht , R. K., 2022. Python for Cyber Security. [Online]

Available at: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://cs4all.studentscenter.in/assets/Python%20CS/Py

thon%20for%20Cyber%20Security%20Manual.pdf

[Accessed 30 April 2025].

Nzeako , G. & Shittu, R. A., 2024. Leveraging AI for enhanced identity and access management in cloud-

based systems to advance user authentication and access control. World Journal of Advanced Research

and Reviews, 24(03), pp. 1661-1674.

Olagbuji, D. O., 2023. How to Send Email with Verification Link in Django. [Online]

Available at: https://plainenglish.io/blog/how-to-send-email-with-verification-link-in-django

[Accessed 30 April 2025].

Olayinka , T. A., Adegede, J. & Jacob, J. G. G., 2024. Balancing Usability and Security in Secure System

Design: A Comprehensive Study on Principles, Implementation, and Impact on Usability. International

Journal of Computing Sciences Research, 8(0), pp. 2995-3009.

104

OWASP, 2021. OWASP Top Ten. [Online]

Available at: https://owasp.org/www-project-top-ten/

[Accessed 30 April 2025].

OWASP, 2025. Testing for Weak Lock Out Mechanism. [Online]

Available at: https://owasp.org/www-project-web-security-testing-guide/latest/4-

Web_Application_Security_Testing/04-Authentication_Testing/03-

Testing_for_Weak_Lock_Out_Mechanism

[Accessed 30 April 2025].

OWASP, 2025. Web Application Security Testing. [Online]

Available at: https://owasp.org/www-project-web-security-testing-guide/latest/4-

Web_Application_Security_Testing/

[Accessed 30 April 2025].

OWASP, N.D.. Testing for Weak Lock Out Mechanism. [Online]

Available at: https://owasp.org/www-project-web-security-testing-guide/latest/4-

Web_Application_Security_Testing/04-Authentication_Testing/03-

Testing_for_Weak_Lock_Out_Mechanism

[Accessed 30 April 2025].

OWASP, N.D.. Testing Techniques Explained. [Online]

Available at: https://owasp.org/www-project-web-security-testing-guide/latest/2-

Introduction/README#Testing-Techniques-Explained

[Accessed 30 April 2025].

Owens , J. & Matthews, J., N.D.. A Study of Passwords and Methods Used in Brute-Force SSH Attacks.

[Online]

Available at: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://d1wqtxts1xzle7.cloudfront.net/75610403/leet08

-libre.pdf?1638514619=&response-content-

disposition=inline%3B+filename%3DA_study_of_passwords_and_methods_used_in.pdf&Expires=17470

10182&Signature=Yus

[Accessed 30 April 2025].

Özeren , S., 2024. Breach and Attack Simulation vs. Security Validation. [Online]

Available at: https://www.picussecurity.com/resource/blog/breach-and-attack-simulation-vs-security-

validation

[Accessed 08 December 2024].

Palmieri, M., 2013. System Testing in a Simulated Environment. [Online]

Available at: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.diva-

portal.org/smash/get/diva2:613817/FULLTEXT01.pdf

[Accessed 07 December 2024].

Papathanasaki, M., Maglaras, L. & Ayres, N., 2022. Modern Authentication Methods: A Comprehensive

Survey. AI, Computer Science and Robotics Technology, Volume 0, pp. 1-24.

105

Park, K., Lee, J., Ashok, K. D. & Park, Y., 2023. BPPS:Blockchain-Enabled Privacy-Preserving Scheme for

Demand-Response Management in Smart Grid Environments. Computer Science, Engineering,

Environmental Science, 20(2), pp. 1719-1729.

Parmar, V., Sanghvi, H. A., Patel, R. H. & Pandya, A. S., 2022. A Comprehensive Study on Passwordless

Authentication. Erode, IEEE.

Phan, K., 2008. Implementing Resiliency of Adaptive Multi-Factor Authentication Systems. [Online]

Available at: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://repository.stcloudstate.edu/cgi/viewcontent.cgi?

article=1095&context=msia_etds

[Accessed 30 March 2025].

Purba, K. R. & Ramli, R., 2022. A Rapid Solo Software Development (RSSD) Methodology based on Agile.

[Online]

Available at:

https://www.researchgate.net/publication/362980213_A_Rapid_Solo_Software_Development_RSSD_M

ethodology_based_on_Agile

[Accessed 30 April 2025].

PyLessons, 2022. Django website introduction. [Online]

Available at: https://pylessons.com/django-introduction

[Accessed 30 April 2025].

PyLessons, 2022. Google reCAPTCHA in Django. [Online]

Available at: https://pylessons.com/django-recaptcha#google_vignette

[Accessed 30 April 2025].

Rashidi, B. & Garg, V., 2021. Open sesame: Lessons in password-based user authentication. Cyber

Security: A Peer-Reviewed Journal, 4(4), p. 317–329.

Raza, M., Iqbal, M., Sharif, M. & Haider, W., 2012. A Survey of Password Attacks and Comparative

Analysis on Methods for Secure Authentication. World Applied Sciences Journal, 19(4), pp. 439-444.

Renaud , K., Scott-Brown , K. C. & Szymkow, A., 2018. Designing authentication with seniors in mind.

Barcelona, Spain, s.n.

Rivera, J. J. D., Muhammad, A. & Song, W.-C., 2024. Securing Digital Identity in the Zero Trust

Architecture: A Blockchain Approach to Privacy-Focused Multi-Factor Authentication. IEEE Open Journal

of the Communications Society.

Sanjari, M. et al., 2014. Ethical challenges of researchers in qualitative studies: the necessity to develop a

specific guideline. Journal of medical ethics and history of medicine, 7(14).

Sarveshwaran, V., Chen, J. l.-z. & Pelusi, D., 2023. Artificial Intelligence and Cyber Security in Industry 4.0.

s.l.:Springer.

Shrivastava, G. et al., 2024. Emerging Threats and Countermeasures in Cybersecurity. s.l.:John Wiley &

Sons.

106

Socol, J., N.D.. Django Ratelimit. [Online]

Available at: https://django-ratelimit.readthedocs.io/en/stable/index.html

[Accessed 30 April 2025].

Sutherland, J., 2014. Scrum: The Art of Doing Twice the Work in Half the Time. 1st ed. New York: Crown

Business.

Tamilkodi, R. et al., 2024. Identification and Prevention of Brute Force Attacks. Singapore, Springer.

Tariq, N., Khan, F. A., Moqurrab, S. A. & Srivastava, G., 2023. CAPTCHA Types and Breaking Techniques:

Design Issues,Challenges, and Future Research Directions. ACM Comput. Surv, 00(0).

Turner, S. & Housley, R., 2008. implementing Email Security and Tokens: Current Standards, Tools and

Practices. Indiana: Wiley Publishing Inc.

Uma, M. & Padmavathi, G., 2013. A Survey on Various Cyber Attacks and Their Classification.

International Journal of Network Security, 15(5), pp. 390-396.

Velásquez, I., Caro, A. & Rodríguez, A., 2018. Authentication schemes and methods: A systematic

literature review. Information and Software Technology, Volume 94, pp. 30-37.

Velásquez, I., Caro, A. & Rodríguez, A., 2019. Multifactor Authentication Methods: A Framework for Their

Comparison and Selection. In: Computer and Network Security. India: s.n.

Velgekar, S., Khandve, H. & Gundla, R., 2021. Survey of Artificial Intelligence Applications In

Cybersecurity. International Journal of Innovative Research in Science, Engineering and Technology

(IJIRSET), 10(5), pp. 4289-4296.

Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D., 2003. User Acceptance of Information

Technology: Toward a Unified View. MIS Quarterly, 27(3), pp. 425-478.

Vugdelija, N. et al., N.D.. REVIEW OF BRUTE-FORCE ATTACK AND PROTECTION TECHNIQUES. [Online]

Available at: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://proceedings.ictinnovations.org/attachment/pap

er/554/review-of-brute-force-attack-and-protection-techniques.pdf

[Accessed 1 April 2025].

Wang, D. et al., 2023. Security in wireless body area networks via anonymous authentication:

Comprehensive literature review, scheme classification, and future challenges. Ad Hoc Networks, Volume

153, p. 10332.

Wang, X., Yan, Z., Zhang, R. & Zhang, P., 2021. Attacks and defenses in user authentication systems: A

survey. Journal of Network and Computer Applications, 15 August.Volume 188.

Wang, Z. & Sun, W., 2020. Review of Web Authentication. Journal of Physics: Conference Series, Volume

1646, pp. 14-15.

Wee, A. K., Chekole, E. G. & Zhou, J., 2024. Excavating Vulnerabilities Lurking in Multi-Factor

Authentication Protocols: A Systematic Security Analysis.

107

Weingart , S. H., 2002. Physical Security Devices for Computer Subsystems: A Survey of Attacks and

Defenses. Berlin, Springer.

Yonkeu, S., 2020. Location and Device Fingerprinting. [Online]

Available at: https://dev.to/yokwejuste/location-and-device-fingerprinting-1caa

[Accessed 30 April 2025].

Yonkeu, S., 2020. Role-Based Access Control in Django. [Online]

Available at: https://dev.to/yokwejuste/role-based-access-control-in-django-4j1d

[Accessed 30 April 2025].

Yusop, M. I. M., Kamarudin, N. H., Suhaimi, N. H. S. & Hasan, M. K., 2025. Advancing Passwordless

Authentication: A Systematic Review of Methods, Challenges, and Future Directions for Secure User

Identity. IEEE Access, Volume 13, pp. 13919 - 13943.

Zeng, J. et al., 2024. A Survey of Third-Party Library Security Research in Application Software. [Online]

Available at: https://arxiv.org/html/2404.17955v1

[Accessed 30 April 2025].

Zhang, C. J., Gill, A. Q., Liu, B. & Anwar, M., 2025. AI-based Identity Fraud Detection: A Systematic Review.

[Online]

Available at: https://arxiv.org/html/2501.09239v1

[Accessed 01 May 2025].

Zhang, J. et al., 2018. T2FA: Transparent Two-Factor Authentication. IEEE Access, January, Volume 6, p.

32677–32686.

Zhang, X. et al., 2022. Data breach: analysis, countermeasures andchallenges. International Journal of

Information and Computer Security, January, 19(3/4), pp. 402-442.

108

Appendices

Appendix A: Setup Guide/Readme file

Below are the step-by-step setup instructions, as detailed in the README file, for

running the LogIn system. The LogIn System is available on my GitHub repository:

https://github.com/MUTEGIbeatrice/thesisdjango.git

Steps:

a). First run pip install -r requirements.txt so as to install all the required

dependencies that was used throughout the app development time.

b). Then use this command to run the DjangoApp in:

 http: python manage.py runserver

 https: python manage.py runserver_plus --cert-file cert.pem --key-file

key.pem

c). Then create an account on the signup page.

Credentials of users in the Django logIn System

 Superuser or Admin:

Username: UserAdmin

Password: User@123

 First user:

Username: UserOne

Password: User1pass@1

109

Appendix B: Source Code Snippets of Core Components

Below are key highlights from the core components of the logIn System. The full source

code is available at: https://github.com/MUTEGIbeatrice/thesisdjango.git

Implementation of Django-Axes on Settings.py

Figure 4: Django-Axes as on settings.py

110

Login view capturing rate limit

Figure 5: Rate limit on login view

111

Signup view

Figure 6: Signup view

112

Email Token Verification as on tokens.py

Figure 7: Email token on tokens.py

User Access Control on Decorators.py

Figure 8: User Access Control on decorators.py

113

OTP-based Two-Factor Authentication (2FA) Logic on Login view

Figure 9: OTP verification on Login view

CAPTCHA Verification Logic on Login view

Figure 10: CAPTCHA Verification on Login view

114

Progressive Account Lockout Implementation Code as on utils.py

Figure 11: Progressive Lockout on utils.py

Email Token Generator Code

Figure 12: Email Token Generator on tokens.py

115

Urls.py

Figure 13: urls.py

Device Fingerprinting (User agents) implementation on Signals.py

Figure 14: User agents on signals.py

116

Google reCAPTCHA v2 settings

Figure 15: Google reCAPTCHA settings

117

Appendix C: Functionality Tests

This section contains all the functionality tests done as well as the output/results.

Login Logic Functionality Tests

Login page

Figure 16: Login page

118

Error Message when Credentials are invalid during Login

Figure 17: Login with Invalid Credentials

Error Message when CAPTCHA is not verified during Login

Figure 18: Invalid CAPTCHA

119

Error Message when a time-based OTP is not verified due to expiration

Figure 19: Unverified OTP

120

Successfully resent a time-based OTP to user’s email

Figure 20: OTP resent successfully

121

Email containing the OTP

Figure 21: Email containing OTP

122

Successful Login as Admin

Figure 22: Login Successfully

Admin Successfully logged out

Figure 23: Successfully Logged Out

123

Sign-up Logic Functionality Tests

Signup page

Figure 24: Signup page

124

A modal to help the user know password guidelines when creating a password

Figure 25: Password guide modal on signup page

Error handling due to Invalid Input of weak password and during Signup

Figure 26: Signup Error Handling

125

After a valid input, the system notifies the user to check the email for a verification

token. A verification email is sent to user so as to verify email

Figure 27: Email Verification

126

Once user has verified the email, the user is redirected to a ‘Email successfully verified’

page and from there the user can be redirected to login page to login.

Figure 28: Email Verified Page

127

Password Reset Logic Functionality Tests

From the Login page, the user can reset the password. Below is Password reset page

handling errors caused by a user creating a weak password.

Figure 29: Password reset error handling 1

Figure 30: Password reset error handling 2

128

Successfully sent email with a password reset token

Figure 31: Password reset email

The user can see the guidelines for password so as to enhance its strength

Figure 32: Password guide when resetting

129

User has successfully reset the password and they can now login with their new

password

Figure 33: Password reset successful

Lockout Logic Functionality Tests

After 3 failed login attempts, the user’s account and IP are blocked then the user is

redirected to the Lockout page successfully.

130

Figure 34: Account lockout page

Logging is then done and a Lockout email alert to admin is executed successfully.

Figure 35: Lockout email to admin

131

When the user goes back to the Login page and tries to login again while the username

and IP are locked, Login page will display a message informing that the account is

locked and will be redirect to the locked-out page again.

Figure 36: Account locked login page

The user will also receive an email about the ‘locked account’ situation.

Figure 37: User notified of locked account

132

Contact Support Logic Functionality Tests

Contact Support page automatically fills in the username and email if you access the

page when signed in

Figure 38: Contact Support page

Contact Support Email Sent to the Admin Successfully.

133

Figure 39: Customer Support Email Success

Session Expiry Functionality Test

The session cookie is executing successfully, as it logs out the user after 25 minutes of

inactivity (as integrated in the system). This helps enhance security by reducing the risk

of unauthorized access from idle sessions, ensuring that user accounts remain

protected from potential session hijacking or misuse.

134

Figure 40: Session Expiry Test

135

Appendix D: Simulation Tests and Results

All the simulations tests done as well as their results/outputs are described in this

section.

Progressive Lockout Simulation Tests and Results

A simulation was created and ran (python manage.py test_progressive_lockout --

username testuser --attempts 20 --delay 0.5), below is the source code

Figure 41:simulate_progressive_lockout code

The results below shows that the lockout test passed, and the progressive lockout

mechanism is working as intended.

136

Figure 42: simulate_progressive_lockout result1

Figure 43:simulate_progressive_lockout result2

137

Here are the key points from the output:

 Failed Login Attempts: The output shows that for each failed login attempt, the

system correctly identifies that the user is locked out after a certain number of

failed attempts.

 Lockout Duration: The message "User 'testuser' should be locked out for 5

minutes after X failed attempts" confirms that the lockout duration is being

applied progressively as expected.

 Completion of Test: The message "Progressive lockout test completed." indicates

that the test ran to completion without any unhandled exceptions.

The system is correctly tracking failed login attempts and applying the lockout policy

based on the defined LOCKOUT_STAGES.

Password Expiration and Change Simulation Tests and Results

To test forced password expiration after 90 days, a simulation was created and run

using the command (python manage.py simulate_password_expiry --username

testuser). This command sets the testuser account’s join date to 91 days ago, which

138

triggers the password expiration (after 90 days), prompting a password change.

Figure 44: simulate_password_expiration Code

The simulation ran successfully, and the system correctly prompted the user to change

their password after 90 days, as expected.

139

Time-Based OTP Expiration (Login) Simulation Tests and Results

To test how long OTP takes to expire during login, a simulation was created and ran.

The command used: python manage.py test logIn.tests.test_otp_expiration

Below are the code snippets and results/output:

Figure 45: test_otp_expiration code and results

Here are the key points from the output:

 The message OTP valid immediately after generation? True confirms that the

OTP is functional and valid right after it is created, as expected.

 The output Time until OTP expiration: 0:10:00 shows that the OTP is configured

to expire after exactly 10 minutes, which aligns with the defined security settings.

 The message OTP valid after waiting 10 minutes? False indicates that the OTP is

invalid after the expiration period, demonstrating the expiration logic works

correctly.

140

 The line Ran 1 test in 602.267s with a result of OK confirms the test executed

fully with no errors or exceptions.

The system successfully enforces the 10-minute OTP expiration rule. It validates OTPs

immediately after generation and correctly invalidates them after the configured timeout,

ensuring strong time-based security control.

Time-Based Email Token Expiration (Signup) Simulation Tests and Results

To test how long email token takes to expire during signup, a simulation was created

and ran. The command used: python manage.py test logIn.tests.test_token_expiration

Below are the code snippets and results/output:

Figure 46: test_token_expiration code and results

141

Here are the key points from the output:

 The message Token valid immediately after generation? True confirms that the

Token is functional and valid right after it is created, as expected.

 The output Token valid after 23 hours? True shows that the Token is still valid

after 23 hours, which aligns with the defined security settings of 24hours validity.

 The output Token valid after 25 hours? False shows that the Token is still invalid

after 25 hours, demonstrating the expiration logic works correctly.

 The line Ran 1 test in 0.934s OK confirms the test executed fully with no errors or

exceptions.

The system successfully enforces the 24-hour Token expiration rule. It validates Tokens

immediately after generation and correctly invalidates them after the configured timeout

(24-hours), ensuring strong time-based security control.

Brute Force Attack Simulation Tests and Results

A simulation was created and run to test whether the system can prevent a brute force

attack originating from a single IP address. The command used: python manage.py

simulate_bruteforce --username=testuser --attempts=10 --delay=0.5 Below is the code

snippet.

142

Figure 47: simulate_bruteforce code

The simulation tested 10 login attempts from a single IP address (127.0.0.1) with a 0.5-

second delay between attempts. Below are the results/output.

143

Figure 48:simulate_bruteforce result1

Figure 49: simulate_bruteforce result2

144

Key points from the output/results:

 The system successfully triggered a lockout at attempt 3, after 6.76 seconds.

 All subsequent attempts (4–10) were correctly blocked, confirming that the

account remained locked out.

 Multiple lockout confirmation messages indicate that the account remained

locked during repeated post-lockout attempts.

 The total time before final lockout confirmation was 18.68 seconds.

The system effectively enforced a lockout after repeated failed login attempts,

demonstrating resistance against brute force attacks from a single IP address.

Distributed Brute Force Attack Simulation Tests and Results

A simulation was created and run to test whether the system can prevent a brute force

attack originating from multiple IP addresses simultaneously. The command used:

python manage.py simulate_distributed_bruteforce --username testuser --attempts 10 --

delay 0.5 --ip-list 127.0.0.1 127.0.0.2 127.0.0.3

The system processed attack attempts from three IPs: 127.0.0.1, 127.0.0.2, and

127.0.0.3. Below are the code snippet and the outputted results.

145

Figure 50: simulate_distributed_bruteforce code

Figure 51: simulate_distributed_bruteforce result1

146

Figure 52: simulate_distributed_bruteforce result2

Figure 53: simulate_distributed_bruteforce result3

147

Key points from the output/results:

 Lockout was triggered early by IP 127.0.0.2 on the 2nd attempt, effectively

locking all listed IPs out immediately.

 After lockout, subsequent attempts from all IPs were blocked, indicating that the

lockout mechanism works globally across distributed sources.

 Some authentication errors occurred (e.g., "database is locked"), which suggests

concurrent write contention — a typical issue in SQLite under parallel operations.

 The total time to trigger and confirm lockout across all sources was 28.35

seconds.

The system demonstrated the ability to detect and block a coordinated brute-force

attack from multiple IP addresses, enforcing a global account lockout policy. This

confirms the effectiveness of the distributed brute-force mitigation strategy.

Concurrent Session Test and Results

A test was created and ran to test whether the system prevents concurrent session. The

command used: pytest logIn/tests/test_concurrent_session.py --disable-warnings -q

From the output it showed that it ran successfully and concurrent session is prevented.

148

Figure 54: Concurrent session test and results

pytest and Results

pytest was ran to test all the tests of the system. The command used: pytest

All the tests were succesfull except for the ratelimit one because it was been blocked by

the ratelimit decorator in the login view. Thus suggesting that the block works.

149

Figure 55: pytest results

Appendix E: Dashboard Analytics and Lockout stats Logs Test

150

Dashboard Analytics View

Figure 56: Security Dashboard1

Figure 57: Security Dashboard3

	References

